similar to: passing formula arg to mgcv::gam

Displaying 20 results from an estimated 10000 matches similar to: "passing formula arg to mgcv::gam"

2004 Sep 03
1
how to debug a sudden exit in non-interactive mode
Hi, I have a piece of R code that calls mgcv::gam. The code runs fine in the interactive mode, but terminates R w/o a single message when run non-interactively. Though I think I should be able to locate the problem by brute force I'd appreciate an advise how to do it more intelligently using R debugging tools. At this time I only know that it has something to do with me loading my custom
2004 Oct 15
1
2d approx
Hi, I am looking for a function that generalizes 'approx' to two (or more) dimensions. The references on the approx help page point toward splines, but a) splines is what I am trying to avoid in the first place and b) splines (except for mgcv splines) seem to be one dimensional. Here is a more detailed account. Using mgcv:gam I fit an additive model xy.gam according to the formula y ~
2008 Jun 11
1
mgcv::gam error message for predict.gam
Sometimes, for specific models, I get this error from predict.gam in library mgcv: Error in complete.cases(object) : negative length vectors are not allowed Here's an example: model.calibrate <- gam(meansalesw ~ s(tscore,bs="cs",k=4), data=toplot, weights=weight, gam.method="perf.magic") > test <- predict(model.calibrate,newdata) Error in
2007 Dec 13
1
Two repeated warnings when runing gam(mgcv) to analyze my dataset?
Dear all, I run the GAMs (generalized additive models) in gam(mgcv) using the following codes. m.gam <-gam(mark~s(x)+s(y)+s(lstday2004)+s(ndvi2004)+s(slope)+s(elevation)+disbinary,family=binomial(logit),data=point) And two repeated warnings appeared. Warnings$B!'(B 1: In gam.fit(G, family = G$family, control = control, gamma = gamma, ... : Algorithm did not converge 2: In gam.fit(G,
2008 May 06
1
mgcv::gam shrinkage of smooths
In Dr. Wood's book on GAM, he suggests in section 4.1.6 that it might be useful to shrink a single smooth by adding S=S+epsilon*I to the penalty matrix S. The context was the need to be able to shrink the term to zero if appropriate. I'd like to do this in order to shrink the coefficients towards zero (irrespective of the penalty for "wiggliness") - but not necessarily all the
2009 Aug 24
2
Formulas in gam function of mgcv package
Dear R-experts, I have a question on the formulas used in the gam function of the mgcv package. I am trying to understand the relationships between: y~s(x1)+s(x2)+s(x3)+s(x4) and y~s(x1,x2,x3,x4) Does the latter contain the former? what about the smoothers of all interaction terms? I have (tried to) read the manual pages of gam, formula.gam, smooth.terms, linear.functional.terms but
2009 Aug 24
2
Formulas in gam function of mgcv package
Dear R-experts, I have a question on the formulas used in the gam function of the mgcv package. I am trying to understand the relationships between: y~s(x1)+s(x2)+s(x3)+s(x4) and y~s(x1,x2,x3,x4) Does the latter contain the former? what about the smoothers of all interaction terms? I have (tried to) read the manual pages of gam, formula.gam, smooth.terms, linear.functional.terms but
2012 Aug 14
1
Random effects in gam (mgcv 1.7-19)
Hi, I am using the gam function in the mgcv package, I have random effects in my model (bs="re") this has worked fine, but after I updated the mgcv package to version 1.7-19 I recive an error message when I run the model. > fit1<-gam(IV~s(RUTE,bs="re")+s(T13)+s(H40)+factor(AAR)+s(V3)+s(G1)+s(H1)+s(V1)+factor(LEDD),data=data5,method="ML") > summary.gam(fit1)
2012 Jul 23
1
mgcv: Extract random effects from gam model
Hi everyone, I can't figure out how to extract by-factor random effect adjustments from a gam model (mgcv package). Example (from ?gam.vcomp): library(mgcv) set.seed(3) dat <- gamSim(1,n=400,dist="normal",scale=2) a <- factor(sample(1:10,400,replace=TRUE)) b <- factor(sample(1:7,400,replace=TRUE)) Xa <- model.matrix(~a-1) ## random main effects Xb <-
2012 Jul 30
2
mgcv 1.7-19, vis.gam(): "invalid 'z' limits'
Hi everyone, I ran a binomial GAM consisting of a tensor product of two continuous variables, a continuous parametric term and crossed random intercepts on a data set with 13,042 rows. When trying to plot the tensor product with vis.gam(), I get the following error message: Error in persp.default(m1, m2, z, col = col, zlim = c(min.z, max.z), xlab = view[1], : invalid 'z' limits In
2009 Mar 24
2
help: what are the basis functions in {mgcv}: gam?
I am writing my thesis with the function gam(), with the package {mgcv}. My command is: gam(y~s(x1,bs="cr")+s(x2, bs="cr")). I need help to know what are the default basis funcitons for gam. I have not found any detailed reference for this. Can anyone help me with this?? -- View this message in context:
2011 Mar 28
2
mgcv gam predict problem
Hello I'm using function gam from package mgcv to fit splines. ?When I try to make a prediction slightly beyond the original 'x' range, I get this error: > A = runif(50,1,149) > B = sqrt(A) + rnorm(50) > range(A) [1] 3.289136 145.342961 > > > fit1 = gam(B ~ s(A, bs="ps"), outer.ok=TRUE) > predict(fit1, newdata=data.frame(A=149.9), outer.ok=TRUE) Error
2007 Oct 04
1
Convergence problem in gam(mgcv)
Dear all, I'm trying to fit a pure additive model of the following formula : fit <- gam(y~x1+te(x2, x3, bs="cr")) ,with the smoothing parameter estimation method "magic"(default). Regarding this, I have two questions : Question 1 : In some cases the value of "mgcv.conv$fully.converged" becomes "FALSE", which tells me that the method stopped with a
2005 Oct 05
3
testing non-linear component in mgcv:gam
Hi, I need further help with my GAMs. Most models I test are very obviously non-linear. Yet, to be on the safe side, I report the significance of the smooth (default output of mgcv's summary.gam) and confirm it deviates significantly from linearity. I do the latter by fitting a second model where the same predictor is entered without the s(), and then use anova.gam to compare the
2010 Aug 04
2
more questions on gam/gamm(mgcv)...
Hi R-users, I'm using R 2.11.1, mgcv 1.6-2 to fit a generalized additive mixed model. I'm new to this package...and just got more and more problems... 1. Can I include correlation and/or random effect into gam( ) also? or only gamm( ) could be used? 2. I want to estimate the smoothing function s(x) under each level of treatment. i.e. different s(x) in each level of treatment. shall I
2013 Jun 17
1
Can you use two offsets in gam (mgcv)?
Hello, I have been trying to find out whether it is possible to use more than one offset in a gam (in mgcv). The reason I would like to do this is to 1) account for area surveyed in a Poisson model of sightings of porpoises within defined grid cells (each cell has a slightly different area) and 2) account for detection probability within each grid cell (some grid cells are further away from the
2010 Jun 18
2
varIdent error using gam function in mgcv
Hello, As I am relatively new to the R environment this question may be either a) Really simple to answer b) Or I am overlooking something relatively simple. I am trying to add a VarIdent structure to my gam model which is fitting smoothing functions to the time variables year and month for a particular species. When I try to add the varIdent weights to variable Month I get this error returned.
2007 Oct 24
1
GAM vs. MGCV packages
Hi all, I am a new R- user and I am going through the R-manuals, but I could not find an answer for my question. I am confused about when to use the GAM package and when to use the MGCV package?? My Model is a GAM model of continuous outcome and many non-linear continuous predictors (using the "s" function) as well as categorical predictors. Thanks in advance for your help and
2012 Feb 03
1
GAM (mgcv) warning: matrix not positive definite
Dear list, I fitted the same GAM model using directly the function gam(mgcv) ... then as a parameter of another function that capture the warnings messages (see below). In the first case, there is no warning message printed, but in the last one, the function find two warning messages stating "matrix not positive definite" So my question is: Do I have to worry about those warnings and
2007 Jun 25
1
gam function in the mgcv library
I would like to fit a logistic regression using a smothing spline, where the spline is a piecewise cubic polynomial. Is the knots option used to define the subintervals for each piece of the cubic spline? If yes and there are k knots, then why does the coefficients field in the returned object from gam only list k coefficients? Shouldn't there be 4k -4 coefficients? Sincerely, Bill