Displaying 20 results from an estimated 4000 matches similar to: "Re: extracting datasets from aregImpute objects"
2004 Aug 13
0
Re: extracting datasets from aregImpute objects
I've tried doing this by specifying x=TRUE, which provides me with a single imputation, that has been useful. However, the help file possibly suggests that I should get a flat-file matrix of n.impute imputations, presumably with indexing. I'm a bit stuck using alternatives to aregImpute, as neither MICE nor Amelia seem to like my dataset, and Frank Harrell no longer recommends Transcan
2005 Jul 09
1
aregImpute: beginner's question
Hello R-help,
Thanks for everyone's very helpful suggestions so far. I am now trying to
use aregImpute for my missing data imputation. Here are the code and error
messages. Any suggestions would be very much appreciated.
Sincerely,
Anders Corr
########################################
#Question for R-Help on aregImpute
########################################
#DOWNLOAD DATA (61Kb)
2012 Jul 05
0
Confused about multiple imputation with rms or Hmisc packages
Hello,
I'm working on a Cox Proportional Hazards model for a cancer data set that has missing values for the categorical variable "Grade" in less than 10% of the observations. I'm not a statistician, but based on my readings of Frank Harrell's book it seems to be a candidate for using multiple imputation technique(s). I understand the concepts behind imputation, but using
2003 Jun 16
1
Hmisc multiple imputation functions
Dear all;
I am trying to use HMISC imputation function to perform multiple imputations
on my data and I keep on getting errors for the code given in the help
files.
When using "aregImpute" the error is;
>f <- aregImpute(~y + x1 + x2 + x3, n.impute=100)
Loading required package: acepack
Iteration:1 Error in .Fortran("wclosepw", as.double(w), as.double(x),
2004 Aug 17
2
Re: Thanks Frank, setting graph parameters, and why social scientists don't use R
First, many thanks to Frank Harrell for once again helping me out. This actually relates to the next point, which is my contribution to the 'why don't social scientists use R' discussion. I am a hybrid social scientist(child psychiatrist) who trained on SPSS. Many of my difficulties in coming to terms with R have been to do with trying to apply the logic underlying SPSS, with dire
2003 Jul 25
1
Difficulty replacing NAs using Hmisc aregImpute and Impute
Hello R experts
I am using Hmisc aregImpute and Impute (following example on page 105 of The
Hmisc and Design Libraries).
*My end goal is to have NAs physically replaced in my dataframe. I have
read the help pages and example in above sited pdf file, but to no avail.
Here is example of what I did.
Ph, my data frame, is attached.
> xt <- aregImpute (~ q5 + q22rev02 + q28a, n.impute=10,
2005 May 04
3
Imputation
I have timeseries data for some factors, and some missing values are there in those factors, I want impute those missing values without disturbing the distribution of that factor, and maintaining the correlation with other factors. Pl. suggest me some imputation methods.
I tried some functions in R like aregImpute, transcan. After the imputation I am unable to retrive the data with imputed
2010 Aug 10
1
Multiple imputation, especially in rms/Hmisc packages
Hello, I have a general question about combining imputations as well as a
question specific to the rms and Hmisc packages.
The situation is multiple regression on a data set where multiple
imputation has been used to give M imputed data sets. I know how to get
the combined estimate of the covariance matrix of the estimated
coefficients (average the M covariance matrices from the individual
2008 Nov 26
1
multiple imputation with fit.mult.impute in Hmisc - how to replace NA with imputed value?
I am doing multiple imputation with Hmisc, and
can't figure out how to replace the NA values with
the imputed values.
Here's a general ourline of the process:
> set.seed(23)
> library("mice")
> library("Hmisc")
> library("Design")
> d <- read.table("DailyDataRaw_01.txt",header=T)
> length(d);length(d[,1])
[1] 43
[1] 2666
2003 Jul 28
2
aregImpute: warning message re: acepack and mace
hi,
i'm trying to learn how to use aregImpute by doing the examples provided with
the package, and after installing Hmisc.1.6-1.zip (for Windows),
and running the very first example on R 1.7.1, i get an error message warning
me about "mace" (see below) and acepack.
i found the acepack package, but its filename ends in tar.gz
and i'm finding it difficult to open (because its
2007 Sep 26
1
using transcan for imputation, categorical variable
Dear all,
I am using transcan to impute missing values (single imputation). I have
several dichotomous variables in my dataset, but when I try to impute
the missings sometimes values are imputed that were originally not in
the dataset. So, a variable with 2 values (severe weight loss or
no/limited weight loss) for example coded 0 and 1, shows 3 different
values after imputation (0, 1 and 2).
I
2003 Apr 22
0
Hmisc's aregImpute segfaults R-1.7.0 under linux
Hello -
When trying to use Hmisc library's aregImpute function on R 1.7.0, I
got the following error -- shown here using the example code from the
help page --- under both Linux and Mac OS X 10.2.5:
set.seed(3)
x1 <- factor(sample(c('a','b','c'),1000,T))
x2 <- (x1=='b') + 3*(x1=='c') + rnorm(1000,0,2)
x3 <- rnorm(1000)
y <- x2 +
2010 Nov 01
1
Error message in fit.mult.impute (Hmisc package)
Hello,
I would like to use the aregImpute and fit.mult.impute to impute missing
values for my dataset and then conduct logistic regression analyses on the
data, taking into account that we imputed values. I have no problems
imputing the values using aregImpute, but I am getting an error at the
fit.mult.impute stage.
Here is some sample code (I actually have more observations and variables to
2011 Mar 31
2
fit.mult.impute() in Hmisc
I tried multiple imputation with aregImpute() and
fit.mult.impute() in Hmisc 3.8-3 (June 2010) and R-2.12.1.
The warning message below suggests that summary(f) of
fit.mult.impute() would only use the last imputed data set.
Thus, the whole imputation process is ignored.
"Not using a Design fitting function; summary(fit)
will use standard errors, t, P from last imputation only.
Use
2004 Jun 15
1
fit.mult.impute and quantile regression
I have a largish dataset (1025) with around .15 of the data missing at random overall, but more like .25 in the dependent variable. I am interested in modelling the data using quantile regression, but do not know how to do this with multiply imputed data (which is what the dataset seems to need). The original plan was to use qr (or whatever) from the quantreg package as the 'fitter'
2009 Apr 22
1
Multiple imputations : wicked dataset ? Wicked computers ? Am I cursed ? (or stupid ?)
Dear list,
I'd like to use multiple imputations to try and save a somewhat badly
mangled dataset (lousy data collection, worse than lousy monitoring, you
know that drill... especially when I am consulted for the first time
about one year *after* data collection).
My dataset has 231 observations of 53 variables, of which only a very
few has no missing data. Most variables have 5-10% of
2009 Mar 09
5
Help
Hello Everyone,
I am trying to excess the inbuit .Fortran and .C codes of R. Can any one
help me in that. For example in kmeans clustering the algorithms are written
in .Fortran I want to access them and see the .Fortran syntax of the codes.
Can any one help me how can I do that?
Thanx,
Nitin Kumar
On Thu, Nov 27, 2008 at 12:00 PM, <r-help-request@r-project.org> wrote:
> Send R-help
2008 Jun 30
3
Is there a good package for multiple imputation of missing values in R?
I'm looking for a package that has a start-of-the-art method of
imputation of missing values in a data frame with both continuous and
factor columns.
I've found transcan() in 'Hmisc', which appears to be possibly suited
to my needs, but I haven't been able to figure out how to get a new
data frame with the imputed values replaced (I don't have Herrell's book).
Any
2010 May 04
1
aregImpute (Hmisc package) : error in matxv(X, xcof)...
Dear r-help list,
I'm trying to use multiple imputation for my MSc thesis.
Having good exemples using the Hmisc package, I tried the aregImpute function. But with my own dataset, I have the following error :
Erreur dans matxv(X, xcof) : columns in a (51) must be <= length of b (50)
De plus : Warning message:
In f$xcoef[, 1] * f$xcenter :
la taille d'un objet plus long n'est pas
2003 Dec 08
1
Design functions after Multiple Imputation
I am a new user of R for Windows, enthusiast about the many functions
of the Design and Hmisc libraries.
I combined the results of a Cox regression model after multiple imputation
(of missing values in some covariates).
Now I got my vector of coefficients (and of standard errors).
My question is: How could I use directly that vector to run programs such
as 'nomogram', 'calibrate',