Displaying 20 results from an estimated 4000 matches similar to: "GlmmPQL with binomial errors"
2004 Jun 09
1
GlmmPQL
Dear all,
I have two questions concerning model simplification in GlmmPQL, for for random
and fixed effects:
1. Fixed effects: I don't know if I can simply specify anova(model) and trust
the table that comes up with the p value for each variable in the fixed
effects formula. I have read that the only way to test for fixed effects is to
do approximate wald tests based on the standard errors
2003 Jan 14
1
glmmPQL and anova
Dear R-users,
I have conducted an experiment with a 2*2*2 factorial within-subjects design. All factors are binary and the dependent measure is a frequency of successes between 0 and 4. Treating this as a normally distributed variable, I would perform a repeated-measures ANOVA as follows:
> aov(y ~ A*B*C + Error(subj/(A+B+C)))
but since the distribution of the dependent measure is clearly
2006 Feb 27
2
singular convergence in glmmPQL
I am using the 'glmmPQL function in the 'MASS' library to fit a mixed effects logistic regression model to simulated data. I am conducting a series of simulations, and with certain simulated datasets, estimation of the random effects logistic regression model unexpectedly terminates. I receive the following error message from R:
Error in lme.formula(fixed=zz + arm.long,random=~1 |
2005 Sep 04
1
specification for glmmPQL
Hello All,
I have a question regarding how glmmPQL should be specified. Which of
these two is correct?
summary(fm.3 <- glmmPQL(cbind(response, 100 - response) ~ expt,
data = data.1, random = ~ 1 | subject,
family = binomial))
summary(fm.4 <- glmmPQL(response ~ expt, data = data.2,
random = ~ 1 | subject, family =
2005 Dec 01
3
Strange Estimates from lmer and glmmPQL
I'm trying to fit a generalized mixed effects model to a data set where
each subject has paired categorical responses y (so I'm trying to use a
binomial logit link). There are about 183 observations and one
explanatory factor x. I'm trying to fit something like:
(lmer(y~x+(1|subject)))
I also tried fitting the same type of model using glmmPQL from MASS. In
both cases, I get a
2003 Aug 18
2
glmmPQL() and memory limitations
Hi, all,
When running glmmPQL(), I keep getting errors like
Error: cannot allocate vector of size 61965 Kb
Execution halted
This is R-1.7.1. The data set consists of about 11,000 binary responses
from 16 subjects. The model is
fixed =
SonResp ~ (ordered (Stop) + ordered (Son)) * StopResp,
random =
~ 1 + (ordered (Stop) + ordered (Son)) * StopResp | Subj
family = binomial (link =
2003 Apr 22
1
glmmPQL and additive random effects?
I'm a bit puzzled by how to write out additive random effects in
glmmPQL. In my situation, I have a factorial design on two
(categorical) random factors, A and B. At each combination, I have a
binary response, y, and two binary fixed covariates, C and D.
If everything were fixed, I would use
glm(y ~ A + B + C + D, family = binomial)
My first thought was to use
glmmPQL(y ~ A + B, random
2006 Apr 10
1
Weights in glmmPQL
Hello,
I am using the R function glmmPQL to fit a logistic GLMM, with weights.
I am finding that I get fairly different parameter estimates in glmmPQL
from fitting the full dataset (with no "weight" statement) and an
equivalent, shorter dataset with the weights statement. I am using the
weights statement in the 'glmmPQL' function exactly as in the 'glm'
function. I
2013 Jul 11
1
Differences between glmmPQL and lmer and AIC calculation
Dear R Community,
I?m relatively new in the field of R and I hope someone of you can
help me to solve my nerv-racking problem.
For my Master thesis I collected some behavioral data of fish using
acoustic telemetry. The aim of the study is to compare two different
groups of fish (coded as 0 and 1 which should be the dependent
variable) based on their swimming activity, habitat choice, etc.
2005 Aug 20
1
glmmPQL and Convergence
I fit the following model using glmmPQL from MASS:
fit.glmmPQL <-
glmmPQL(ifelse(class=="Disease",1,0)~age+x1+x2,random=~1|subject,family=binomial)
summary(fit.glmmPQL)
The response is paired (pairing denoted by subject), although some
subjects only have one response. Also, there is a perfect positive
correlation between the paired responses. x1 and x2 can and do differ
within each
2005 Dec 27
2
glmmPQL and variance structure
Dear listers,
glmmPQL (package MASS) is given to work by repeated call to lme. In the
classical outputs glmmPQL the Variance Structure is given as " fixed
weights, Formula: ~invwt". The script shows that the function
varFixed() is used, though the place where 'invwt' is defined remains
unclear to me. I wonder if there is an easy way to specify another
variance
2006 Mar 24
1
predict.glmmPQL Problem
Dear all,
for a cross-validation I have to use predict.glmmPQL() , where the
formula of
the corresponding glmmPQL call is not given explicitly, but constructed
using as.formula.
However, this does not work as expected:
x1<-rnorm(100); x2<-rbinom(100,3,0.5); y<-rpois(100,2)
mydata<-data.frame(x1,x2,y)
library(MASS)
# works as expected
model1<-glmmPQL(y~x1, ~1 | factor(x2),
2005 Oct 19
1
anova with models from glmmPQL
Hi !
I try to compare some models obtained from glmmPQL.
model1 <-
glmmPQL(y~red*yellow+I(red^2)+I(yellow^2)+densite8+I(densite8^2)+freq8_4
+I(freq8_4^2), random=~1|num, binomial);
model2 <-
glmmPQL(y~red*yellow+I(red^2)+I(yellow^2)+densite8+I(densite8^2)+freq8_4
, random=~1|num, binomial);
anova(model1, model2)
here is the answer :
Erreur dans anova.lme(model1, model2) : Objects must
2009 Oct 21
1
odd evaluation within correlation argument of glmmPQL
[I think I've seen this reported before but can't locate it any more.
I believe this oddity (glitch? feature?) is behind a query that
Jean-Baptiste Ferdy asked a year ago
<http://finzi.psych.upenn.edu/Rhelp08/2008-October/176449.html>]
It appears that glmmPQL looks in the global workspace, not
within the data frame specified by the "data" argument, for
the variables
2008 Sep 02
1
plotting glmmPQL function
hello all,
i'm an R newbie struggling a bit with the glmmPQL function (from the nlme
pack). i think i've managed to run the model successfully, but can't seem
to plot the resulting function. plot(glmmPQL(...)) plots the residuals
rather than the model... i know this should be basic, but i can't seem to
figure it out. many thanks in advance.
j
--
View this message in context:
2004 Mar 20
1
contrast lme and glmmPQL and getting additional results...
I have a longitudinal data analysis project. There are 10 observations
on each of 15 units, and I'm estimating this with randomly varying
intercepts along with an AR1 correction for the error terms within
units. There is no correlation across units. Blundering around in R
for a long time, I found that for linear/gaussian models, I can use
either the MASS method glmmPQL (thanks to
2006 Aug 10
1
glmmPQL question!
Hello Folks-
Is there a way to create confidence bands with 'glmmPQL' ???
I am performing a stroke study for Northwestern University in Chicago, Illinois. I am trying to
decide a way to best plot the model which we created with the glmmPQL function in R. I would like
to plot my actual averaged data points within 95 % confidence intervals from the model. Plotting
the model is easy,
2003 Jul 25
1
glmmPQL using REML instead of ML
Hi,
In glmmPQL in the MASS library, the function uses
repeated calls to the function lme(), using ML. Does
anyone know how you can change this to REML? I know
that in lme(), the default is actually set to REML and
you can also specify this as 'method=REML' or
'method'ML' but this isn't applicable to glmmPQL().
I'd appreciate any help or advice!
Thanks,
Emma
2018 Jan 31
1
What is the default covariance structure in the glmmPQL function (MASS package)?
Hello,
currently I am trying to fit a generalized linear mixed model using the
glmmPQL function in the MASS package. I am working with the data
provided by the book from Heck, Thomas and Tabata (2012) -
https://www.routledge.com/Multilevel-Modeling-of-Categorical-Outcomes-Using-IBM-SPSS/Heck-Thomas-Tabata/p/book/9781848729568
I was wondering, which variance-covariance structure the glmmPQL
2006 Feb 10
1
glmmPQL and random effects
Hello R users,
I am trying to run a model with a binary response variable (nesting
success: 0 failure, 1 success) and 8 fixed terms. Nesting success was
examined in 72 cases in 34 territories (TER) during a 6 study years.
Territories are nested within 14 patches (PATCH). I want to run a model
taking into account these nested factors and repeated observation. To do
this, I assume that the best