Displaying 20 results from an estimated 3000 matches similar to: "nnet: Too many weights?"
2008 Jun 03
1
'asymmetric span' for 2D loess?
Hello,
I am interested in performing a 2D loess smooth on microarray data, i.e.
log2 ratios on a 2D grid, using different spans in the horizontal and
vertical directions (the immediate reason being that replicate spots are
laid out in the horizontal direction). Is it possible to do this in R?
Functions like loess(stats) seem to apply the same span for all
predictors, which carries over to
2018 Dec 11
2
New ID registration
Hi Martjn, and everyone,
Apologies if I have missed the reply, but I think I have not got any comment so far on this. That means our new ID request is accepted? What should I do next to proceed?? Apparently this is my first time here, so appreciate any advice assistance.
Best regards,
Taku
From: Kurosawa, Taku
Sent: Thursday, November 22, 2018 8:41 PM
To: 'Martijn van Beurden'
2010 Jun 17
1
help with nnet
> nnet.fit<-nnet(as.factor(out) ~ ., data=all_h, size=5, rang=0.3,
decay=5e-4, maxit=500) # model fitting
> summary(nnet.fit)
a 23-5-1 network with 126 weights
options were - entropy fitting decay=5e-04
HI, Guys,
I can not find the manual to describe how the model is built, is there a
more detailed description how nnet package works?
--
Sincerely,
Changbin
--
[[alternative
2018 Nov 14
3
New ID registration
Hi, Martijn,
Thank you for reaching out, and apologies for late reply
It is a dedicated metadata for volume normalization on our player.
Please kindly refer to our company information here: https://labelgate.com/
application ID: SONN
application name: Sony Normalizer
contact e-mail address: taku.kurosawa at labelgate.com<mailto:taku.kurosawa at labelgate.com>
Taku
From: flac-dev
2007 Dec 14
2
train nnet
Hi R-helpers,
Can some one tell me how to train 'mynn' of this type?:
mynn <- nnet(y ~ x1 + ..+ x8, data = lgist, size = 2, rang = 0.1,
decay = 5e-4, maxit = 200)
I assume that this nn is untrained, and to train I have to split the
original data into train:test data set,
do leave-one-out refitting to refine the weights (please straighten
this up if I was wrong).
I just don't know
2010 Oct 12
1
need help with nnet
HI, Dear R community,
My data set has 2409 variables, the last one is response variable. I have
used the nnet after feature selection and works. But this time, I am using
nnet to fit a model without feature selection. I got the following error
information:
> dim(train)
[1] 1827 2409
nnet.fit<-nnet(as.factor(out) ~ ., data=train, size=3, rang=0.3,
decay=5e-4, maxit=500) # model
2009 Nov 02
1
modifying predict.nnet() to function with errorest()
Greetings,
I am having trouble calculating artificial neural network
misclassification errors using errorest() from the ipred package.
I have had no problems estimating the values with randomForest()
or svm(), but can't seem to get it to work with nnet(). I believe
this is due to the output of the predict.nnet() function within
cv.factor(). Below is a quick example of the problem I'm
2005 Jul 27
1
how to get actual value from predict in nnet?
Dear All,
After followed the help of nnet, I could get the networks trained and, excitedly, get the prediction for other samples. It is a two classes data set, I used "N" and "P" to label the two. My question is, how do I get the predicted numerical value for each sample? Not just give me the label(either "N" or "P")? Thanks!
FYI: The nnet example I
2018 Nov 07
2
New ID registration
To whom it may concern,
Hi, I would like to register a new ID hrere,
application ID: SONN
application name: Sony Normalizer
contact e-mail address: taku.kurosawa at labelgate.com<mailto:taku.kurosawa at labelgate.com>
please advise what the next step would be.
Best regards,
Taku Kurosawa
-------------- next part --------------
An HTML attachment was scrubbed...
URL:
2003 Jul 16
1
Help on NNET
Hi, Dear all,
I am just starting using R in my work and got some trouble to figure out some of the errors. Can anybody help me?
The following is the script:
read.csv('pupil.txt',header=TRUE,sep='\t')->pupil
samp<-c(1:50, 112:162, 171:220, 228:278)
pupil.nn2 <- nnet(Type ~ ., data = pupil, subset = samp, size = 2, rang = 0.1, decay = 5e-4, maxit = 200)
2011 Jun 01
1
nnet inappropriate fit for class error
Hi,
I am trying to run a nnet algorithm but when I try to use the predict function with type='class', it gives the following error:
fit <- nnet(y~., size = 1, data = train.set, rang = 0.5, maxit=200, decay = 0)
predict<-predict(fit,test.set,type='class')
Error in predict.nnet(fit, test.set, type = "class") :
inappropriate fit for class
I couldn't figure
2007 Jul 15
1
NNET re-building the model
Hello,
I've been working with "nnet" and now I'd like to use the weigths, from
the fitted model, to iterpret some of variables impornatce.
I used the following command:
mts <- nnet(y=Y,x=X,size =4, rang = 0.1,
decay = 5e-4, maxit = 5000,linout=TRUE)
X is (m x n) Y is (m x 1)
And then I get the coeficients by:
Wts<-coef(mts)
b->h1 i1->h1
2004 Jun 14
2
CVnn2 + nnet question
Hi,
I am trying to determine the number of units in the hidden layer
and the decay rate using the CVnn2 script found in MASS directory
(reference: pg 348,MASS-4).
The model that I am using is in the form of Y ~ X1 + X2 + X3...
+ X11 and the underlying data is time-series in nature.
I found the MASS and nnet package extremely useful (many thanks
to the contributors).
However I am getting
2006 Mar 10
1
need help in tune.nnet
Dear R people,
I want to use the tune.nnet function of e1071 package to tune nnet .
I am unable to understand the parameters of tune.nnet from the e1071 pdf
document.
I have performed nnet on a traindata and want to test it for class
prediction with a testdata.
I want to know the values of size,decay,range etc. parameters for which
the prediction of testdata is best.
Can anyone please tell me
2005 Oct 11
1
an error in my using of nnet
Hi, there:
I am trying nnet as followed:
> mg.nnet<-nnet(x=trn3[,r.v[1:100]], y=trn3[,209], size=5, decay = 5e-4,
maxit = 200)
# weights: 511
initial value 13822.108453
iter 10 value 7408.169201
iter 20 value 7362.201934
iter 30 value 7361.669408
iter 40 value 7361.294379
iter 50 value 7361.045190
final value 7361.038121
converged
Error in y - tmp : non-numeric argument to binary operator
2009 Jun 07
1
Inf in nnet final value for validation data
Hi,
I use nnet for my classification problem and have a problem concerning the calculation of the final value for my validation data.(nnet only calculates the final value for the training data). I made my own final value formula (for the training data I get the same value as nnet):
# prob-matrix
pmatrix <- cat*fittedValues
tmp <- rowSums(pmatrix)
# -log likelihood
2004 Mar 30
1
classification with nnet: handling unequal class sizes
I hope this question is adequate for this list
I use the nnet code from V&R p. 348: The very nice and general function
CVnn2() to choose the number of hidden units and the amount of weight
decay by an inner cross-validation- with a slight modification to use it
for classification (see below).
My data has 2 classes with unequal size: 45 observations for classI and
116 obs. for classII
With
2009 May 29
1
final value of nnet with censored=TRUE for survival analysis
Hi there,
I´ve a question concerning the nnet package in the area of survival analysis: what is the final value, which is computed to fit the model with the following nnet-c
all:
net <- nnet(cat~x,
data=d,
size=2,
decay=0.1,
censored=TRUE,
maxit=20,
Wts=rep(0,22),
Hess=TRUE)
where cat is a matrix with a row for each record and
2009 Jul 24
1
nnet library and FANN package'm
Hello !
I'd like to know to which of the FANN package network corresponds the R nnet
network ?
In more details, what is the R nnet activation function, what is the
training algorithm (rprop, quickprop, ...) ? Also, it seems that the R nnet
"decay" parameter in nnet corresponds to the "learning_rate" parameter in
FANN. Correct ?
Many thanks in advance !
Luc Moulinier
2013 Mar 06
1
CARET and NNET fail to train a model when the input is high dimensional
The following code fails to train a nnet model in a random dataset using
caret:
nR <- 700
nCol <- 2000
myCtrl <- trainControl(method="cv", number=3, preProcOptions=NULL,
classProbs = TRUE, summaryFunction = twoClassSummary)
trX <- data.frame(replicate(nR, rnorm(nCol)))
trY <- runif(1)*trX[,1]*trX[,2]^2+runif(1)*trX[,3]/trX[,4]
trY <-