Displaying 20 results from an estimated 6000 matches similar to: "na.action in randomForest --- Summary"
2011 Feb 15
1
[slightly OT] predict.randomForest and type=”prob”
Dear all ,
I would like to use the function randomForest to predict the probability
of relocation failure of a GPS collar as a function of several
environmental variables x (both factor and numeric: slope, vegetation,
etc.) on a given area. The response variable y is thus success
(0)/failure(1) of the relocation, and the sampling unit is the pixel of
a raster map. My aim is to build a map
2003 Aug 26
1
rfImpute (for randomForest) crashed
In trying to execute this line in R (Version 1.7.1 (2003-06-16), under
windows XP pro), with the randomForest library (about two weeks old) loaded,
the program crashed:
bost4rf <- rfImpute(TargetDensity~.,data=bost4rf0)
Specifically, an XP dialog box popped up, saying ?R for windows GUI
front-end has encountered a problem and needs to close.? That was the
dialog saying asking whether I
2003 Aug 04
2
na.action in randomForest
The help page for randomForest shows na.action=na.fail as a parameter, and
does not describe other possibilities for na.action.
I have a regression problem, with about 1000 rows in my data frame, and with
an NA in occasional predictor variables, in about 5% of rows. I would like
to have all rows included in the analysis, to the extent possible. (That
seems to be possible in rpart, for example.)
2010 Jun 30
2
anyone know why package "RandomForest" na.roughfix is so slow??
Hi all,
I am using the package "random forest" for random forest predictions. I
like the package. However, I have fairly large data sets, and it can often
take *hours* just to go through the "na.roughfix" call, which simply goes
through and cleans up any NA values to either the median (numerical data) or
the most frequent occurrence (factors).
I am going to start
2004 Jan 12
0
new version of randomForest (4.0-7)
Dear R users,
I've just released a new version of randomForest (available on CRAN now).
This version contained quite a number of new features and bug fixes,
compared to version prior to 4.0-x (and few more since 4.0-1).
For those not familiar with randomForest, it's an ensemble
classifier/regression tool. Please see
http://www.math.usu.edu/~adele/forests/ for more detailed information,
2004 Jan 12
0
new version of randomForest (4.0-7)
Dear R users,
I've just released a new version of randomForest (available on CRAN now).
This version contained quite a number of new features and bug fixes,
compared to version prior to 4.0-x (and few more since 4.0-1).
For those not familiar with randomForest, it's an ensemble
classifier/regression tool. Please see
http://www.math.usu.edu/~adele/forests/ for more detailed information,
2012 Mar 26
1
NA in R package randomForest
I have a question regarding NA in randomForest (in R). I have a dataset
which include both numerical and non-numerical variables, and the data
includes some NA. I tried to use na.roughfix but then i get an error
message "na.roughfix only works for numeric or factor". I also tried
rfImpute but this does not work either because I have some NA in my
response variable. Does anyone have som
2005 Jul 21
4
RandomForest question
Hello,
I'm trying to find out the optimal number of splits (mtry parameter) for a randomForest classification. The classification is binary and there are 32 explanatory variables (mostly factors with each up to 4 levels but also some numeric variables) and 575 cases.
I've seen that although there are only 32 explanatory variables the best classification performance is reached when
2003 Apr 12
5
rpart vs. randomForest
Greetings. I'm trying to determine whether to use rpart or randomForest
for a classification tree. Has anybody tested efficacy formally? I've
run both and the confusion matrix for rf beats rpart. I've looking at
the rf help page and am unable to figure out how to extract the tree.
But more than that I'm looking for a more comprehensive user's guide
for randomForest including
2008 Jul 22
2
randomForest Tutorial
I am new to R and I'd like to use the randomForest package for my thesis
(identifying important variables for more detailed analysis with other
software). I have found extremely well written and helpful information on
the usage of R.
Unfortunately it seems to be very difficult to find similarly detailed
tutorials for randomForest, and I just can't get it work with the
information on
2010 Oct 21
1
RandomForest Proximity Matrix
Greetings R Users!
I am posting to inquire about the proximity matrix in the randomForest
R-package. I am having difficulty pushing very large data through the
algorithm and it appears to hang on the building of the prox matrix. I have
read on Dr. Breiman's website that in the original code a choice can be made
between using an N x N matrix OR to increase the ability to compute large
2003 Aug 20
2
RandomForest
Hello,
When I plot or look at the error rate vector for a random forest
(rf$err.rate) it looks like a descending function except for a few first
points of the vector with error rates values lower(sometimes much lower)
than the general level of error rates for a forest with such number of trees
when the error rates stop descending. Does it mean that there is a tree(s)
(that is built the first in
2011 Jan 03
1
randomForest speed improvements
Hi there,
We're trying to use randomForest to do some predictions. The test-harness
for our code is pretty straightforward:
library ('randomForest');
data202 <- read.csv ("random.csv", header=TRUE);
x<- data202[1:50000,1:6];
y<- data202[1:50000,8];
y<- y[,drop=TRUE];
x2 <- data202[50001:60000,1:6];
y2 <- data202[50001:60000,8];
y2 <-
2003 Sep 16
1
simplifying randomForest(s)
Dear All,
I have been using the randomForest package for a couple of difficult
prediction problems (which also share p >> n). The performance is good, but
since all the variables in the data set are used, interpretation of what is
going on is not easy, even after looking at variable importance as produced
by the randomForest run.
I have tried a simple "variable selection"
2010 Dec 11
1
randomForest: help with combine() function
I've built two RF objects (RF1 and RF2) and have tried to combine
them, but I get the following error:
Error in rf$votes + ifelse(is.na(rflist[[i]]$votes), 0, rflist[[i]]$votes) :
non-conformable arrays
In addition: Warning message:
In rf$oob.times + rflist[[i]]$oob.times :
longer object length is not a multiple of shorter object length
Both RF models use the same variables, although
2008 Apr 29
1
randomForest and ordered factors
Hello R-user!
I am running R 2.7.0 on a Power Book (Tiger). (I am still R and
statistics beginner)
I try to find the most important variables to divide my dataset as
given in a categorical variable.
code:
Test.rf4<-randomForest(Sex~.,na.action=na.roughfix, data=Subset4,
importance=TRUE, proximity=TRUE, ntree=10000, do.trace=1000,
keep.forest=FALSE)
My dataset contains also ordered
2011 Dec 02
2
Imputing data
So I have a very big matrix of about 900 by 400 and there are a couple of NA
in the list. I have used the following functions to impute the missing data
data(pc)
pc.na<-pc
pc.roughfix <- na.roughfix(pc.na)
pc.narf <- randomForest(pc.na, na.action=na.roughfix)
yet it does not replace the NA in the list. Presently I want to replace the
NA with maybe the mean of the rows or columns or
2005 Oct 27
1
Repost: Examples of "classwt", "strata", and "sampsize" i n randomForest?
"classwt" in the current version of the randomForest package doesn't work
too well. (It's what was in version 3.x of the original Fortran code by
Breiman and Cutler, not the one in the new Fortran code.) I'd advise
against using it.
"sampsize" and "strata" can be use in conjunction. If "strata" is not
specified, the class labels will be used.
2004 Jan 07
1
Questions on RandomForest
Hi, erveryone,
I show much thanks to Andy and Matthew on former questions. I now sample
only a small segment of a image can segment the image into several classes
by RandomForest successfully. Now I have some confusion on it:
1. What is the internal component classifier in RandomForest? Are they the
CART implemented in the rpart package?
2. I use training samples to predict new samples. But
2006 Jul 26
3
memory problems when combining randomForests
Dear all,
I am trying to train a randomForest using all my control data (12,000 cases, ~
20 explanatory variables, 2 classes). Because of memory constraints, I have
split my data into 7 subsets and trained a randomForest for each, hoping that
using combine() afterwards would solve the memory issue. Unfortunately,
combine() still runs out of memory. Is there anything else I can do? (I am not
using