similar to: Multiple imputation

Displaying 20 results from an estimated 8000 matches similar to: "Multiple imputation"

2002 Apr 08
4
Missing data and Imputation
Hi Folks, I'm currently looking at missing data/imputation methods (including multiple imputation). S-Plus has a "missing data library". What similar resources are available within R? Or does one roll one's own? Best wishes to all, Ted. -------------------------------------------------------------------- E-Mail: (Ted Harding) <Ted.Harding at nessie.mcc.ac.uk>
2008 Jun 30
3
Is there a good package for multiple imputation of missing values in R?
I'm looking for a package that has a start-of-the-art method of imputation of missing values in a data frame with both continuous and factor columns. I've found transcan() in 'Hmisc', which appears to be possibly suited to my needs, but I haven't been able to figure out how to get a new data frame with the imputed values replaced (I don't have Herrell's book). Any
2003 Jun 14
1
Missing data augmentation
Hi all, A short while ago I asked a question about multiple imputation and I got several helpful replies, thanks! I have untill now tried to use the packages mice and norm but both give me errors however. mice does not even run to start with and gives me the following error right away: iter imp variable 1 1 Liquidity.ratioError in chol((v + t(v))/2) : the leading minor of order 1 is not
2003 Jun 16
1
Hmisc multiple imputation functions
Dear all; I am trying to use HMISC imputation function to perform multiple imputations on my data and I keep on getting errors for the code given in the help files. When using "aregImpute" the error is; >f <- aregImpute(~y + x1 + x2 + x3, n.impute=100) Loading required package: acepack Iteration:1 Error in .Fortran("wclosepw", as.double(w), as.double(x),
2003 Jul 24
3
Plotting math functions
Hi all, I was wondering whether it is possible to plot math functions, for example sin, cos or a Gaussian type function, in R, and if so, how to do it. I have been searching through the archives and the R manual but had no luck in finding any hints on how to go about this. Any help is much appreciated! Thanks, Jonck
2003 Jun 17
2
Clustering quality measure
Hi all, I am running a series of experiments where after manipulating my data I run several clustering algorithms (agnes, diana and a clustering method of my own) on the data. I wanted to determine which clustering method did the best job, so therefore I had defined my own quality measure using two criteria: compactness of the data within the clusters themselves and the amount of seperation
2003 Dec 08
1
Design functions after Multiple Imputation
I am a new user of R for Windows, enthusiast about the many functions of the Design and Hmisc libraries. I combined the results of a Cox regression model after multiple imputation (of missing values in some covariates). Now I got my vector of coefficients (and of standard errors). My question is: How could I use directly that vector to run programs such as 'nomogram', 'calibrate',
2003 Jun 11
3
Multiple match function?
Hi all, I have (yet another) question about a function in R. What I would like to do is test for the presence of a certain value in a vector, and have the positions that this value is at returned to me. For example, let's say I have a vector: x <- c(1,1,2,2,3,3,4,4) Now I would like a function that would return positions 3 and 4 should I test for the value "2". Or 5 and 6
2003 Jul 27
1
multiple imputation with fit.mult.impute in Hmisc
I have always avoided missing data by keeping my distance from the real world. But I have a student who is doing a study of real patients. We're trying to test regression models using multiple imputation. We did the following (roughly): f <- aregImpute(~ [list of 32 variables, separated by + signs], n.impute=20, defaultLinear=T, data=t1) # I read that 20 is better than the default of
2005 Jul 08
2
missing data imputation
Dear R-help, I am trying to impute missing data for the first time using R. The norm package seems to work for me, but the missing values that it returns seem odd at times -- for example it returns negative values for a variable that should only be positive. Does this matter in data analysis, and/or is there a way to limit the imputed values to be within the minimum and maximum of the actual
2009 Apr 24
1
Multiple Imputation in mice/norm
I'm trying to use either mice or norm to perform multiple imputation to fill in some missing values in my data. The data has some missing values because of a chemical detection limit (so they are left censored). I'd like to use MI because I have several variables that are highly correlated. In SAS's proc MI, there is an option with which you can limit the imputed values that are
2002 May 14
2
R CMD check
I am unclear on whether to run R CMD check pgkname as user or as root on Linux. When running as user, after all the latex, html, and man files are created, I get the following error message: Rdconv(): Couldn't open '': Permission denied Has anyone dealt with that message? When I run R CMD check a second time, all latex, html, etc. are recreated which takes quite a while. Is there
2002 Jul 08
1
Imputations in R
I'm interested in finding a package in R to do multiple imputations, similar to MICE in S-Plus. Does one exist? Please email directly to me. Thanks. Linda Andrews Social & Scientific Systems (301) 628-3234 -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- r-help mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html Send "info",
2005 Jun 28
1
sample R code for multiple imputation
Hi, I have a big dataset which has many missing values and want to implement Multiple imputation via Monte carlo markov chain by following J Schafer's "Analysis of incomplete multivariate data". I don't know where to begin and is looking for a sample R code that implements multiple imputation with EM, MCMC, etc.... Any help / suggestion will be greatly appreciated. David
2005 Nov 09
2
error in NORM lib
Dear alltogether, I experience very strange behavior of imputation of NA's with the NORM library. I use R 2.2.0, win32. The code is below and the same dataset was also tried with MICE and aregImpute() from HMISC _without_ any problem. The problem is as follows: (1) using the whole dataset results in very strange imputations - values far beyond the maximum of the respective column, >
2005 May 04
3
Imputation
  I have timeseries data for some factors, and some missing values are there in those factors, I want impute those missing values without disturbing the distribution of that factor, and maintaining the correlation with other factors. Pl. suggest me some imputation methods. I tried some functions in R like aregImpute, transcan. After the imputation I am unable to retrive the data with imputed
2003 Jul 25
1
Difficulty replacing NAs using Hmisc aregImpute and Impute
Hello R experts I am using Hmisc aregImpute and Impute (following example on page 105 of The Hmisc and Design Libraries). *My end goal is to have NAs physically replaced in my dataframe. I have read the help pages and example in above sited pdf file, but to no avail. Here is example of what I did. Ph, my data frame, is attached. > xt <- aregImpute (~ q5 + q22rev02 + q28a, n.impute=10,
2005 Jan 19
1
Imputation missing observations
>From Internet I downloaded the file Hmisc.zip and used it for R package updation. and R gave the message 'Hmisc' successfull unpacked. But when I use the functions like aregImpute the package is displaying coundn't find the function Where as in help.search it is giving that use of the function >
2010 Jun 30
3
Logistic regression with multiple imputation
Hi, I am a long time SPSS user but new to R, so please bear with me if my questions seem to be too basic for you guys. I am trying to figure out how to analyze survey data using logistic regression with multiple imputation. I have a survey data of about 200,000 cases and I am trying to predict the odds ratio of a dependent variable using 6 categorical independent variables (dummy-coded).
2011 Oct 10
1
Multiple imputation on subgroups
Dear R-users, I want to multiple impute missing scores, but only for a few subgroups in my data (variable 'subgroups': only impute for subgroups 2 and 3). Does anyone knows how to do this in MICE? This is my script for the multiple imputation: imp <- mice(data, m=20, predictorMatrix=pred, post=post, method=c("", "", "", "",