Displaying 20 results from an estimated 7000 matches similar to: "gam questions"
2003 Jun 04
2
gam()
Dear all,
I've now spent a couple of days trying to learn R and, in particular, the
gam() function, and I now have a few questions and reflections regarding
the latter. Maybe these things are implemented in some way that I'm not yet
aware of or have perhaps been decided by the R community to not be what's
wanted. Of course, my lack of complete theoretical understanding of what
2003 Jun 19
2
Grouping binary data
Dear all,
I'm analyzing a binary outcome using glm() with a binomial distribution and
a logit link, and have now reached the point where I'd like to do some
model checking. Since my data are in binary form I'd like to collapse over
the cross-classification of the factors before the model checking.
Are there any nice and simple ways doing this? If so, how? If not, I'd be
2005 Sep 26
4
p-level in packages mgcv and gam
Hi,
I am fairly new to GAM and started using package mgcv. I like the
fact that optimal smoothing is automatically used (i.e. df are not
determined a priori but calculated by the gam procedure).
But the mgcv manual warns that p-level for the smooth can be
underestimated when df are estimated by the model. Most of the time
my p-levels are so small that even doubling them would not result
2003 Oct 04
1
How to use panel.qqmathline?
Dear R users:
How can I use panel.qqmathline, in package lattice, to add
straight lines onto the plots generated by qqmath?
I read help pages of qqmath, panel.qqmathline, xyplot, ...,
but just can't one example that shows how to make it work.
For example,
> data(sleep)
> qqnorm(~ extra | group, data=sleep, aspect=1)
how can I use panel.qqmathline?
Thanks very much for your help,
2004 Oct 18
3
答复: R plot problems
Thank you for your help!
I gave you an example, you could run it in R . Maybe you will understand my meaning clearly.
x <- data.frame(main.name="AAA", x.name=rep(c("Apply","Watermelon","Lemon","Banana",
2004 Mar 23
1
influence.measures, cooks.distance, and glm
Dear list,
I've noticed that influence.measures and cooks.distance gives different
results for non-gaussian GLMs. For example, using R-1.9.0 alpha
(2003-03-17) under Windows:
> ## Dobson (1990) Page 93: Randomized Controlled Trial :
> counts <- c(18,17,15,20,10,20,25,13,12)
> outcome <- gl(3,1,9)
> treatment <- gl(3,3)
> glm.D93 <- glm(counts ~ outcome +
2006 May 10
1
Allowed quasibinomial links (PR#8851)
Full_Name: Henric Nilsson
Version: 2.3.0 Patched (2006-05-09 r38014)
OS: Windows 2000 SP4
Submission from: (NULL) (83.253.9.137)
When supplying an unavailable link to `quasibinomial', the error message looks
strange. E.g.
> quasibinomial("x")
Error in quasibinomial("x") : 'x' link not available for quasibinomial family,
available links are "logit",
2004 Sep 03
6
seq
Hi everyone,
I've tried the below on R 1.9.1 and the 2004-08-30 builds of R 1.9.1
Patched and R 2.0.0 on Windows 2000, and the results are consistent.
> seq(0.5, 0, by = -0.1)
[1] 0.5 0.4 0.3 0.2 0.1 0.0
> seq(0.7, 0, by = -0.1)
[1] 7.000000e-01 6.000000e-01 5.000000e-01 4.000000e-01 3.000000e-01
2.000000e-01 1.000000e-01 -1.110223e-16
Is this really the intended behaviour?
2013 Jul 08
1
error in "predict.gam" used with "bam"
Hello everyone.
I am doing a logistic gam (package mgcv) on a pretty large dataframe
(130.000 cases with 100 variables).
Because of that, the gam is fitted on a random subset of 10000. Now when I
want to predict the values for the rest of the data, I get the following
error:
> gam.basis_alleakti.1.pr=predict(gam.basis_alleakti.1,
+
2003 Jul 03
1
How to use quasibinomial?
Dear all,
I've got some questions, probably due to misunderstandings on my behalf, related
to fitting overdispersed binomial data using glm().
1. I can't seem to get the correct p-values from anova.glm() for the F-tests when
supplying the dispersion argument and having fitted the model using
family=quasibinomial. Actually the p-values for the F-tests seems identical to the
p-values for
2007 Feb 13
1
Missing variable in new dataframe for prediction
Hi,
I'm using a loop to evaluate several models by taking adjacent variables from my dataframe.
When i try to get predictions for new values, i get an error message about a missing variable in my new dataframe.
Below is an example adapted from ?gam in mgcv package
library(mgcv)
set.seed(0)
n<-400
sig<-2
x0 <- runif(n, 0, 1)
x1 <- runif(n, 0, 1)
x2 <- runif(n, 0, 1)
x3 <-
2006 Jan 19
2
gam
Dear R users,
I'm new to both R and to this list and would like to get
advice on how to build generalized additive models in R.
Based on the description of gam, which I found on the R
website, I specified the following model:
model1<-gam(ST~s(MOWST1),family=binomial,data=strikes.S),
in which ST is my binary response variable and MOWST1 is a
categorical independent variable.
I get the
2005 Nov 23
1
1st derivative {mgcv} gam smooth
Dear R-hep,
I'm trying to get the first derivative of a smooth from a gam
model like:
model<-gam(y~s(x,bs="cr", k=5)+z) and need the derivative: ds(x)/dx. Since
coef(model) give me all the parameters, including the parameters of the
basis, I just need the 1st derivative of the basis s(x).1, s(x).2, s(x).3,
s(x).4. If the basis were generated with the function
2007 Mar 16
3
Unhidden predict methods
Hi,
I've noted that not all `predict' methods are hidden in the namespace:
> methods("predict")
[1] predict.ar* predict.Arima*
[3] predict.arima0* predict.glm
[5] predict.HoltWinters* predict.lm
[7] predict.loess* predict.mlm
[9] predict.nls* predict.poly
[11] predict.ppr* predict.prcomp*
[13]
2010 Aug 05
2
compare gam fits
Hi folks,
I originally tried R-SIG-Mixed-Models for this one
(https://stat.ethz.ch/pipermail/r-sig-mixed-models/2010q3/004170.html),
but I think that the final steps to a solution aren't mixed-model
specific, so I thought I'd ask my final questions here.
I used gamm4 to fit a generalized additive mixed model to data from a
AxBxC design, where A is a random effect (human participants in
2017 Feb 07
2
package load altering RNG state
>>>>> Henric Winell <nilsson.henric at gmail.com>
>>>>> on Tue, 7 Feb 2017 13:37:42 +0100 writes:
> Hi, On 2017-02-07 13:12, Benjamin Tyner wrote:
>> Hello
>>
>> When loading a package, I'm wondering if it's frowned
>> upon for the package to alter the state of the random
>> number
2004 Dec 01
2
step.gam
Dear R-users:
Im trying (using gam package) to develop a stepwise analysis. My gam
object contains five pedictor variables (a,b,c,d,e,f). I define the
step.gam:
step.gam(gamobject, scope=list("a"= ~s(a,4), "b"= ~s(b,4), "c"= ~s(c,4),
"d"= ~s(d,4), "e"= ~s(e,4), "f"= ~s(f,4)))
However, the result shows a formula containing the whole
2005 Jan 13
2
GAM: Remedial measures
I fitted a GAM model with Poisson distribution to a data with about 200
observations. I noticed that the plot of the residuals versus fitted values
show a trend. Residuals tend to be lower for higher fitted values. Because,
I'm dealing with count data, I'm thinking that this might be due to
overdispersion. Is there a way to account for overdispersion in any of the
packages MGCV or GAM?
2012 Apr 02
1
gamm: tensor product and interaction
Hi list,
I'm working with gamm models of this sort, using Simon Wood's mgcv library:
gm<- gamm(Z~te(x,y),data=DATA,random=list(Group=~1))
gm1<-gamm(Z~te(x,y,by=Factor)+Factor,data=DATA,random=list(Group=~1))
with a dataset of about 70000 rows and 110 levels for Group
in order to test whether tensor product smooths vary across factor levels. I was wondering if comparing those two
2004 Oct 26
3
GLM model vs. GAM model
I have a question about how to compare a GLM with a GAM model using anova
function.
A GLM is performed for example:
model1 <-glm(formula = exitus ~ age+gender+diabetes, family = "binomial",
na.action = na.exclude)
A second nested model could be:
model2 <-glm(formula = exitus ~ age+gender, family = "binomial", na.action =
na.exclude)
To compare these two GLM