similar to: rpart vs. randomForest

Displaying 20 results from an estimated 5000 matches similar to: "rpart vs. randomForest"

2003 Apr 16
2
Jackknife and rpart
Hi, First, thanks to those who helped me see my gross misunderstanding of randomForest. I worked through a baging tutorial and now understand the "many tree" approach. However, it is not what I want to do! My bagged errors are accpetable but I need to use the actual tree and need a single tree application. I am using rpart for a classification tree but am interested in a more unbaised
2006 Mar 08
8
how to use the randomForest and rpart function?
Hi all, I am trying to play around with the randomForest function for classification. I know its performance is great. I am currently using the default options. It has many options. How do I further tweak the options so that I can make its performance even better? What are the options that are mostly used? Thanks a lot! M [[alternative HTML version deleted]]
2005 Jul 21
4
RandomForest question
Hello, I'm trying to find out the optimal number of splits (mtry parameter) for a randomForest classification. The classification is binary and there are 32 explanatory variables (mostly factors with each up to 4 levels but also some numeric variables) and 575 cases. I've seen that although there are only 32 explanatory variables the best classification performance is reached when
2003 Jul 23
3
Boosting, bagging and bumping. Questions about R tools and predictions.
I'm interested in further understanding the differences in using many classification trees to improve classification rates. I'm also interested in finding out what I can do in R and which methods will allow prediction. Can anybody point me to a citation or discussion? Specifically, I want to classify remotely sensed imagery where training data is extracted on class membership by the user.
2003 Aug 20
2
RandomForest
Hello, When I plot or look at the error rate vector for a random forest (rf$err.rate) it looks like a descending function except for a few first points of the vector with error rates values lower(sometimes much lower) than the general level of error rates for a forest with such number of trees when the error rates stop descending. Does it mean that there is a tree(s) (that is built the first in
2004 Apr 05
3
Can't seem to finish a randomForest.... Just goes and goe s!
When you have fairly large data, _do not use the formula interface_, as a couple of copies of the data would be made. Try simply: Myforest.rf <- randomForest(Mydata[, -46], Mydata[,46], ntrees=100, mtry=7) [Note that you don't need to set proximity (not proximities) or importance to FALSE, as that's the default already.] You might also want to use
2004 Apr 05
2
Can't seem to finish a randomForest.... Just goes and goes!
Alternatively, if you can arrive at a sensible ordering of the levels you can declare them ordered factors and make the computation feasible once again. Bill Venables. -----Original Message----- From: r-help-bounces at stat.math.ethz.ch [mailto:r-help-bounces at stat.math.ethz.ch] On Behalf Of Torsten Hothorn Sent: Monday, 5 April 2004 4:27 PM To: David L. Van Brunt, Ph.D. Cc: R-Help Subject:
2008 Dec 26
2
about randomForest
hello, I want to use randomForest to classify a matrix which is 331030?42,the last column is class signal.I use ? Memebers.rf<-randomForest(class~.,data=Memebers,proximity=TRUE,mtry=6,ntree=200) which told me" the error is matrix(0,n,n) set too elements" then I use: Memebers.rf<-randomForest(class~.,data=Memebers,importance=TRUE,proximity=TRUE) which told me"the error is
2007 Jan 04
3
randomForest and missing data
Does anyone know a reason why, in principle, a call to randomForest cannot accept a data frame with missing predictor values? If each individual tree is built using CART, then it seems like this should be possible. (I understand that one may impute missing values using rfImpute or some other method, but I would like to avoid doing that.) If this functionality were available, then when the trees
2005 Aug 15
2
randomForest Error passing string argument
I'm attempting to pass a string argument into the function randomForest but I get an error: state <- paste(list("fruit ~", "apples+oranges+blueberries", "data=fruits.data, mtry=2, do.trace=100, na.action=na.omit, keep.forest=TRUE"), sep= " ", collapse="") model.rf <- randomForest(state) Error in if (n==0) stop ("data(x) has 0
2013 Feb 03
3
RandomForest, Party and Memory Management
Dear All, For a data mining project, I am relying heavily on the RandomForest and Party packages. Due to the large size of the data set, I have often memory problems (in particular with the Party package; RandomForest seems to use less memory). I really have two questions at this point 1) Please see how I am using the Party and RandomForest packages. Any comment is welcome and useful.
2010 Jul 14
1
randomForest outlier return NA
Dear R-users, I have a problem with randomForest{outlier}. After running the following code ( that produces a silly data set and builds a model with randomForest ): ####################### library(randomForest) set.seed(0) ## build data set X <- rbind( matrix( runif(n=400,min=-1,max=1), ncol = 10 ) , rep(1,times= 10 ) ) Y <- matrix( nrow = nrow(X), ncol = 1) for( i in (1:nrow(X))){
2008 Jun 15
1
randomForest, 'No forest component...' error while calling Predict()
Dear R-users, While making a prediction using the randomForest function (package randomForest) I'm getting the following error message: "Error in predict.randomForest(model, newdata = CV) : No forest component in the object" Here's my complete code. For reproducing this task, please find my 2 data sets attached ( http://www.nabble.com/file/p17855119/data.rar data.rar ).
2011 Feb 15
1
[slightly OT] predict.randomForest and type=”prob”
Dear all , I would like to use the function randomForest to predict the probability of relocation failure of a GPS collar as a function of several environmental variables x (both factor and numeric: slope, vegetation, etc.) on a given area. The response variable y is thus success (0)/failure(1) of the relocation, and the sampling unit is the pixel of a raster map. My aim is to build a map
2010 Nov 10
2
randomForest can not handle categorical predictors with more than 32 categories
I received this error Error in randomForest.default(m, y, ...) : Can not handle categorical predictors with more than 32 categories. using below code library(randomForest) library(MASS) memory.limit(size=12999) x <- read.csv("D:/train_store_title_view.csv", header=TRUE) x <- na.omit(x) set.seed(131) sales.rf <- randomForest(sales ~ ., data=x, mtry=3, importance=TRUE) My
2009 Aug 13
2
randomForest question--problem with ntree
Hi, I would like to use a random Forest model to get an idea about which variables from a dataset may have some prognostic significance in a smallish study. The default for the number of trees seems to be 500. I tried changing the default to ntree=2000 or ntree=200 and the results appear identical. Have changed mtry from mtry=5 to mtry=6 successfully. Have seen same problem on both a Windows
2002 Apr 02
2
random forests for R
Hi all, There is now a package available on CRAN that provides an R interface to Leo Breiman's random forest classifier. Basically, random forest does the following: 1. Select ntree, the number of trees to grow, and mtry, a number no larger than number of variables. 2. For i = 1 to ntree: 3. Draw a bootstrap sample from the data. Call those not in the bootstrap sample the
2002 Apr 02
2
random forests for R
Hi all, There is now a package available on CRAN that provides an R interface to Leo Breiman's random forest classifier. Basically, random forest does the following: 1. Select ntree, the number of trees to grow, and mtry, a number no larger than number of variables. 2. For i = 1 to ntree: 3. Draw a bootstrap sample from the data. Call those not in the bootstrap sample the
2003 Aug 05
1
na.action in randomForest --- Summary
A few days ago I asked whether there were options other than na.action=na.fail for the R port of Breiman?s randomForest; the function?s help page did not say anything about other options. I have since discovered that a pdf document called ?The randomForest Package? and made available by Andy Liaw (who made the tool available in R---thank you) does discuss an option. It is an implementation of
2005 Jan 25
3
multi-class classification using rpart
Hi, I am trying to make a multi-class classification tree by using rpart. I used MASS package'd data: fgl to test and it works well. However, when I used my small-sampled data as below, the program seems to take forever. I am not sure if it is due to slowness or there is something wrong with my codes or data manipulation. Please be advised ! The data is described as the output from str()