similar to: a maximazation question

Displaying 20 results from an estimated 3000 matches similar to: "a maximazation question"

2013 Jun 23
1
2SLS / TSLS / SEM non-linear
Dear all, I try to conduct a SEM / two stage least squares regression with the following equations: First: X ~ IV1 + IV2 * Y Second: Y ~ a + b X therein, IV1 and IV2 are the two instruments I would like to use. the structure I would like to maintain as the model is derived from economic theory. My problem here is that I have trouble solving the equations to get the reduced form so I can run
2010 Feb 06
1
Canberra distance
Hi the list, According to what I know, the Canberra distance between X et Y is : sum[ (|x_i - y_i|) / (|x_i|+|y_i|) ] (with | | denoting the function 'absolute value') In the source code of the canberra distance in the file distance.c, we find : sum = fabs(x[i1] + x[i2]); diff = fabs(x[i1] - x[i2]); dev = diff/sum; which correspond to the formula : sum[ (|x_i - y_i|) /
2004 Apr 18
2
lm with data=(means,sds,ns)
Hi Folks, I am dealing with data which have been presented as at each x_i, mean m_i of the y-values at x_i, sd s_i of the y-values at x_i number n_i of the y-values at x_i and I want to linearly regress y on x. There does not seem to be an option to 'lm' which can deal with such data directly, though the regression problem could be algebraically
2018 Jan 17
1
mgcv::gam is it possible to have a 'simple' product of 1-d smooths?
I am trying to test out several mgcv::gam models in a scalar-on-function regression analysis. The following is the 'hierarchy' of models I would like to test: (1) Y_i = a + integral[ X_i(t)*Beta(t) dt ] (2) Y_i = a + integral[ F{X_i(t)}*Beta(t) dt ] (3) Y_i = a + integral[ F{X_i(t),t} dt ] equivalents for discrete data might be: 1) Y_i = a + sum_t[ L_t * X_it * Beta_t ] (2) Y_i
2007 Feb 01
3
Help with efficient double sum of max (X_i, Y_i) (X & Y vectors)
Greetings. For R gurus this may be a no brainer, but I could not find pointers to efficient computation of this beast in past help files. Background - I wish to implement a Cramer-von Mises type test statistic which involves double sums of max(X_i,Y_j) where X and Y are vectors of differing length. I am currently using ifelse pointwise in a vector, but have a nagging suspicion that there is a
2001 Mar 05
1
Canberra dist and double zeros
Canberra distance is defined in function `dist' (standard library `mva') as sum(|x_i - y_i| / |x_i + y_i|) Obviously this is undefined for cases where both x_i and y_i are zeros. Since double zeros are common in many data sets, this is a nuisance. In our field (from which the distance is coming), it is customary to remove double zeros: contribution to distance is zero when both x_i
2001 Mar 05
1
Canberra dist and double zeros
Canberra distance is defined in function `dist' (standard library `mva') as sum(|x_i - y_i| / |x_i + y_i|) Obviously this is undefined for cases where both x_i and y_i are zeros. Since double zeros are common in many data sets, this is a nuisance. In our field (from which the distance is coming), it is customary to remove double zeros: contribution to distance is zero when both x_i
2017 Dec 11
1
OT -- isotonic regression subject to bound constraints.
Well, I could argue that it's not *completely* OT since my question is motivated by an enquiry that I received in respect of a CRAN package "Iso" that I wrote and maintain. The question is this: Given observations y_1, ..., y_n, what is the solution to the problem: minimise \sum_{i=1}^n (y_i - y_i^*)^2 with respect to y_1^*, ..., y_n^* subject to the "isotonic"
2010 Feb 05
3
metafor package: effect sizes are not fully independent
In a classical meta analysis model y_i = X_i * beta_i + e_i, data {y_i} are assumed to be independent effect sizes. However, I'm encountering the following two scenarios: (1) Each source has multiple effect sizes, thus {y_i} are not fully independent with each other. (2) Each source has multiple effect sizes, each of the effect size from a source can be categorized as one of a factor levels
2018 Mar 15
3
stats 'dist' euclidean distance calculation
Hello, I am working with a matrix of multilocus genotypes for ~180 individual snail samples, with substantial missing data. I am trying to calculate the pairwise genetic distance between individuals using the stats package 'dist' function, using euclidean distance. I took a subset of this dataset (3 samples x 3 loci) to test how euclidean distance is calculated: 3x3 subset used
2010 Apr 25
1
function pointer question
Hello, I have the following function that receives a "function pointer" formal parameter name "fnc": loocv <- function(data, fnc) { n <- length(data.x) score <- 0 for (i in 1:n) { x_i <- data.x[-i] y_i <- data.y[-i] yhat <- fnc(x=x_i,y=y_i) score <- score + (y_i - yhat)^2 } score <- score/n
2003 Oct 23
1
Variance-covariance matrix for beta hat and b hat from lme
Dear all, Given a LME model (following the notation of Pinheiro and Bates 2000) y_i = X_i*beta + Z_i*b_i + e_i, is it possible to extract the variance-covariance matrix for the estimated beta_i hat and b_i hat from the lme fitted object? The reason for needing this is because I want to have interval prediction on the predicted values (at level = 0:1). The "predict.lme" seems to
2005 Jun 15
2
need help on computing double summation
Dear helpers in this forum, This is a clarified version of my previous questions in this forum. I really need your generous help on this issue. > Suppose I have the following data set: > > id x y > 023 1 2 > 023 2 5 > 023 4 6 > 023 5 7 > 412 2 5 > 412 3 4 > 412 4 6 > 412 7 9 > 220 5 7 > 220 4 8 > 220 9 8 > ...... > Now I want to compute the
2007 Mar 01
1
covariance question which has nothing to do with R
This is a covariance calculation question so nothing to do with R but maybe someone could help me anyway. Suppose, I have two random variables X and Y whose means are both known to be zero and I want to get an estimate of their covariance. I have n sample pairs (X1,Y1) (X2,Y2) . . . . . (Xn,Yn) , so that the covariance estimate is clearly 1/n *(sum from i = 1 to n of ( X_i*Y_i) ) But,
2004 Dec 15
2
how to fit a weighted logistic regression?
I tried lrm in library(Design) but there is always some error message. Is this function really doing the weighted logistic regression as maximizing the following likelihood: \sum w_i*(y_i*\beta*x_i-log(1+exp(\beta*x_i))) Does anybody know a better way to fit this kind of model in R? FYI: one example of getting error message is like: > x=runif(10,0,3) > y=c(rep(0,5),rep(1,5)) >
2008 Dec 01
1
linear functional relationships with heteroscedastic & non-Gaussian errors - any packages around?
Hi, I have a situation where I have a set of pairs of X & Y variables for each of which I have a (fairly) well-defined PDF. The PDF(x_i) 's and PDF(y_i)'s are unfortunately often rather non-Gaussian although most of the time not multi--modal. For these data (estimates of gas content in galaxies), I need to quantify a linear functional relationship and I am trying to do this as
2018 Mar 15
0
stats 'dist' euclidean distance calculation
> 3x3 subset used > Locus1 Locus2 Locus3 > Samp1 GG <NA> GG > Samp2 AG CA GA > Samp3 AG CA GG > > The euclidean distance function is defined as: sqrt(sum((x_i - y_i)^2)) My > assumption was that the difference between
2011 Jul 19
1
notation question
Dear list, I am currently writing up some of my R models in a more formal sense for a paper, and I am having trouble with the notation. Although this isn't really an 'R' question, it should help me to understand a bit better what I am actually doing when fitting my models! Using the analysis of co-variance example from MASS (fourth edition, p 142), what is the correct notation for the
2008 Jan 31
3
fastest way to compute the squared Euclidean distance between two vectors in R
I have a program which needs to compute squared Euclidean distance between two vectors million of times, which the Rprof shows is the bottleneck. I wondered if there is any faster way than my own simple function distance2 = function(x1, x2) { temp = x1-x2 sum(temp*temp) } I have searched the R-help archives and can not find anything except when the arguments are matrices. Thanks for any
2004 Sep 23
3
R glm
Hello: would you please help me with the following glm question? for the R function glm, what I understand is: once you specify the "family", then the link function is fixed. My question is: is it possible I use, for example, "log" link function, but the estimation approach for the guassian family? Thanks, Shuangge Ma, Ph.D. ******************************************** *