similar to: help with bootstrap

Displaying 20 results from an estimated 10000 matches similar to: "help with bootstrap"

2007 Jul 13
2
nearest correlation to polychoric
Dear all, Has someone implemented in R (or any other language) Knol DL, ten Berge JMF. Least-squares approximation of an improper correlation matrix by a proper one. Psychometrika, 1989, 54, 53-61. or any other similar algorithm? Best regards Jens Oehlschl?gel Background: I want to factanal() matrices of polychoric correlations which have negative eigenvalue. I coded Highham 2002
2003 Feb 06
6
Confused by SVD and Eigenvector Decomposition in PCA
Hey, All In principal component analysis (PCA), we want to know how many percentage the first principal component explain the total variances among the data. Assume the data matrix X is zero-meaned, and I used the following procedures: C = covriance(X) %% calculate the covariance matrix; [EVector,EValues]=eig(C) %% L = diag(EValues) %%L is a column vector with eigenvalues as the elements percent
2009 Dec 01
1
eigenvalues of complex matrices
Dear all, I want to compute the eigenvalues of a complex matrix for some statistics. Comparing it to its matlab/octave sibling, I don't get the same eigenvalues in R computing it from the exact same matrix. In R, I used eigen() and arpack() that give different eigenvalues. In matlab/octave I used eig() and eigs() that give out the same eigenvalues but different to the R ones. For real
2003 Jun 03
3
lda: how to get the eigenvalues
Dear R-users How can I get the eigenvalues out of an lda analysis? thanks a lot christoph -- Christoph Lehmann <christoph.lehmann at gmx.ch>
2008 Mar 03
1
Extracting data from Eigen function
Hi I need to extract the data returned by Eigen to plot the eigenvectors. However, when I try and eigv = eigen(covariance); it returns an object with the matrices containing eigenvalues and vectors.. how can I extract the eigenvector matrix from this?? When I try mat = eig["vectors"] it returns a matrix with the "$vectors" string on top , how can I remove this? code: > eig
2008 Jun 03
3
matlab eigs function in R
Hello Does anybody know how one can compute d largest eigenvalues/eigenvectors in R, like in MATLAB eigs function ? eigen function computes all eigenvectors/eigenvalues, and they are slightly different than those generated by matlab eigs. Thanks in advance -- View this message in context: http://www.nabble.com/matlab-eigs-function-in-R-tp17619641p17619641.html Sent from the R help mailing list
2012 Apr 19
3
Solve an ordinary or generalized eigenvalue problem in R?
Folks: I'm trying to port some code from python over to R, and I'm running into a wall finding R code that can solve a generalized eigenvalue problem following this function model: http://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eig.html Any ideas? I don't want to call python from within R for various reasons, I'd prefer a "native" R solution if one
2003 Apr 03
2
Matrix eigenvectors in R and MatLab
Dear R-listers Is there anyone who knows why I get different eigenvectors when I run MatLab and R? I run both programs in Windows Me. Can I make R to produce the same vectors as MatLab? #R Matrix PA9900<-c(11/24 ,10/53 ,0/1 ,0/1 ,29/43 ,1/24 ,27/53 ,0/1 ,0/1 ,13/43 ,14/24 ,178/53 ,146/244 ,17/23 ,15/43 ,2/24 ,4/53 ,0/1 ,2/23 ,2/43 ,4/24 ,58/53 ,26/244 ,0/1 ,5/43) #R-syntax
2010 Jan 11
3
Eigenvectors and values in R and SAS
Hi, I was wondering if function eigen() does something different from the function call eigen() in SAS. I'm in the process of translating a SAS code into a R code and the values of the eigenvectors and eigenvalues of a square matrix came out to be different from the values in SAS. I would also appreciate it if someone can explain the difference in simple terms. I'm pretty new to both
2005 Aug 31
5
"best" c++ matrix library?
Hi folks, I am planning to write some more time-consuming matrix manipulations in c++. What is the experience with the existing c++ matrix libraries? Do you have some recommendations? Are some libraries more compatible with R than the others? All suggestions welcome! Best, Ott
2011 May 27
1
eigenvalues and correlation matrices
I'm trying to test if a correlation matrix is positive semidefinite. My understanding is that a matrix is positive semidefinite if it is Hermitian and all its eigenvalues are positive. The values in my correlation matrix are real and the layout means that it is symmetric. This seems to satisfy the Hermitian criterion so I figure that my real challenge is to check if the eigenvalues are all
2000 Sep 29
2
non-ideal behavior in princomp/ not a feature but a bug
... I checked and Brian and I are both right (see bottom for prior mail exchange). Let me explain: ============================================================= 1. Indeed, in principle, princomp allows data matrices with are wider than high. Example: > x1 [,1] [,2] [,3] [,4] [1,] 1 1 2 2 [2,] 1 1 2 2 > princomp(x1) Call: princomp(x = x1) Standard deviations:
2000 Sep 29
2
non-ideal behavior in princomp/ not a feature but a bug
... I checked and Brian and I are both right (see bottom for prior mail exchange). Let me explain: ============================================================= 1. Indeed, in principle, princomp allows data matrices with are wider than high. Example: > x1 [,1] [,2] [,3] [,4] [1,] 1 1 2 2 [2,] 1 1 2 2 > princomp(x1) Call: princomp(x = x1) Standard deviations:
2000 Jun 15
1
prcomp help: is this a typo?
Dear All, The help for prcomp, under "Value" says: sdev: the standard deviation of the principal components (i.e., the eigenvalues of the cov matrix, though the calculation is actually done with the singular values of the data matrix). The way I read it, it implies that the sdev are the eigenvalues, but I think that sdev is actually the square root of the
2008 May 16
1
Dimensions of svd V matrix
Hi, I'm trying to do PCA on a n by p wide matrix (n < p), and I'd like to get more principal components than there are rows. However, svd() only returns a V matrix of with n columns (instead of p) unless the argument nv=p is set (prcomp calls svd without setting it). Moreover, the eigenvalues returned are always min(n, p) instead of p, even if nv is set: > x <-
2010 Jun 25
2
Forcing scalar multiplication.
I am trying to check the results from an Eigen decomposition and I need to force a scalar multiplication. The fundamental equation is: Ax = lx. Where 'l' is the eigen value and x is the eigen vector corresponding to the eigenvalue. 'R' returns the eigenvalues as a vector (e <- eigen(A); e$values). So in order to 'check' the result I would multiply the eigenvalues
2000 May 10
4
Q: Problems with eigen() vs. svd()
At 01:37 PM 5/10/00 +0200, ralle wrote: >Hi, >I have a problem understanding what is going on with eigen() for >nonsymmetric matrices. >Example: >h<-rnorm(6) >> dim(h)<-c(2,3) >> c<-rnorm(6) "c" is not a great choice of identifier! >> dim(c)<-c(3,2) >> Pi<-h %*% c >> eigen(Pi)$values >[1] 1.56216542 0.07147773 These could
2005 Aug 03
3
prcomp eigenvalues
Hello, Can you get eigenvalues in addition to eigevectors using prcomp? If so how? I am unable to use princomp due to small sample sizes. Thank you in advance for your help! Rebecca Young -- Rebecca Young Graduate Student Ecology & Evolutionary Biology, Badyaev Lab University of Arizona 1041 E Lowell Tucson, AZ 85721-0088 Office: 425BSW rlyoung at email.arizona.edu (520) 621-4005
2008 Jun 18
2
highest eigenvalues of a matrix
DeaR list, I happily use eigen() to compute the eigenvalues and eigenvectors of a fairly large matrix (200x200, say), but it seems over-killed as its rank is limited to typically 2 or 3. I sort of remember being taught that numerical techniques can find iteratively decreasing eigenvalues and corresponding orthogonal eigenvectors, which would provide a nice alternative (once I have the
2003 Feb 14
1
eigen() error: R Version 1.6.1 on Mac OS X (PR#2550)
Consider this matrix: > sg X1 X2 X3 X4 X5 1 3.240 2.592 2.592 2.592 2.592 2 2.592 3.240 2.592 2.592 2.592 3 2.592 2.592 3.240 2.592 2.592 4 2.592 2.592 2.592 3.240 2.592 5 2.592 2.592 2.592 2.592 3.240 If I compute the eigenvalues of the 'sg' matrix using R Version 1.5.0 (2002-04-29) under Linux (or using Version 1.4.0 (2001-12-19) under Solaris), I obtain: >