similar to: No subject

Displaying 20 results from an estimated 3000 matches similar to: "No subject"

2002 Sep 03
0
RE:
It may depend on which decomposition method you are using, princomp uses eigen whereas prcomp use svd. What does Statistica use? -----Original Message----- From: Williams, Allyson Sent: Tuesday, 3 September 2002 10:20 AM To: r-help at stat.math.ethz.ch Subject: Hello, I'm doing a pca analysis and get unrotated PCA results (using "pca"). I then used "varimax" to
2002 Jun 12
0
Help with Varimax (mva)
I am using R mainly for multiple linear regression and principal components analyses and I am quite happy with it. I think it is a worderful work you have done. But I am having a problem when using Varimax for rotating loadings obtaines from a princomp (I use the cor = TRUE option): the variance across the components in the variables does not mantain. Let me explain it with an example in which
2005 Oct 13
2
varimax rotation difference between R and SPSS
Hi, I am puzzeled with a differing result of princomp in R and FACTOR in SPSS. Regarding the amount of explained Variance, the two results are the same. However, the loadings differ substantially, in the unrotated as well as in the rotated form. In both cases correlation matrices are analyzed. The sums of the squared components is one in both programs. Maybe there is an obvious reason, but I
2010 Nov 30
3
pca analysis: extract rotated scores?
Dear all I'm unable to find an example of extracting the rotated scores of a principal components analysis. I can do this easily for the un-rotated version. data(mtcars) .PC <- princomp(~am+carb+cyl+disp+drat+gear+hp+mpg, cor=TRUE, data=mtcars) unclass(loadings(.PC)) # component loadings summary(.PC) # proportions of variance mtcars$PC1 <- .PC$scores[,1] # extract un-rotated scores of
2004 Nov 03
2
Princomp(), prcomp() and loadings()
In comparing the results of princomp and prcomp I find: 1. The reported standard deviations are similar but about 1% from each other, which seems well above round-off error. 2. princomp returns what I understand are variances and cumulative variances accounted for by each principal component which are all equal. "SS loadings" is always 1. 3. Same happens
2011 Jan 26
1
Factor rotation (e.g., oblimin, varimax) and PCA
A bit of a newbee to R and factor rotation I am trying to understand factor rotations and their implementation in R, particularly the GPArotation library. I have tried to reproduce some of the examples that I have found, e.g., I have taken the values from Jacksons example in "Oblimin Rotation", Encyclopedia of Biostatistics
2010 Jan 18
2
Rotating pca scores
Dear Folks I need to rotate PCA loadings and scores using R. I have run a pca using princomp and I have rotated PCA results with varimax. Using varimax R gives me back just rotated PC loadings without rotated PC scores. Does anybody know how I can obtain/calculate rotated PC scores with R? Your kindly help is appreciated in advance Francesca [[alternative HTML version deleted]]
2004 Feb 17
1
Comparison of % variance explained by each PC before AND after rotation
Hello again- Thanks to Prof. Ripley for responding to my previous question. I would like to clarify my question using sample code. I will use some sample code taken from ?prcomp Again, I would like to compare the % variance explained by each PC before and after rotation. < code follows > data(USArrests) pca = prcomp(USArrests, scale = TRUE) # proportion variance explained by each
2012 Aug 15
0
color-coding of biplot points for varimax rotated factors (from PCA)
I'm using R for PCA and? factor analysis. I want to create biplots of varimax rotated factors that color-code points by their classification. My research is on streams that are urban and rural. So, I want to color code them by this classification. If you just do a biplot from prcomp or princomp, you cannot add this color. So, I have used some code developed by a graduate student in our
2008 Mar 05
2
Principle component analysis
Thanks to Mr.Liviu Androvic and Mr.Richard Rowe helped me in PCA. Because I have just learn R language in a few day so I have many problem. 1) I don't know why PCA rotation function not run although I try many times. Would you please hepl me and explain how to read the PCA map (both of rotated and unrotated) in a concrete example. 2) Where I can find document relate: Plan S(A), S(A*B),
2009 Jan 13
1
PCA loadings differ vastly!
hi, I have two questions: #first (SPSS vs. R): I just compared the output of different PCA routines in R (pca, prcomp, princomp) with results from SPSS. the loadings of the variables differ vastly! in SPSS the variables load constantly higher than in R. I made sure that both progr. use the correlation matrix as basis. I found the same problem with rotated values (varimax rotation and rtex=T
2012 Nov 13
0
sum of squared loadings after varimax?
Is it possible to retrieve sums of squared loadings after applying varimax rotation? Here's the setup to my problem: I ran PCA using prcomp(). I then applied the Kaiser criterion to retain only the components having eigenvalues >= 1. (I know there's debate about the wisdom of that criterion, but I don't want to get sucked into that.) I then fed the reduced set of components to
2009 Mar 31
3
Factor Analysis Output from R and SAS
Dear Users, I ran factor analysis using R and SAS. However, I had different outputs from R and SAS. Why they provide different outputs? Especially, the factor loadings are different. I did real dataset(n=264), however, I had an extremely different from R and SAS. Why this things happened? Which software is correct on? Thanks in advance, - TY #R code with example data # A little
2012 Oct 19
1
factor score from PCA
Hi everyone, I am trying to get the factor score for each individual case from a principal component analysis, as I understand, both princomp() and prcomp() can not produce this factor score, the principal() in psych package has this option: scores=T, but after running the code, I could not figure out how to show the factor score results. Here is my code, could anyone give me some advice please?
2006 May 25
1
PC rotation question
On p. 48 of "Statistics Complements" to the 3rd MASS edition, http://www.stats.ox.ac.uk/pub/MASS3/VR3stat.pdf I read that the orthogonal rotations of Z Lambda^-1 remain uncorrelated, where Z is the PC and Lambda is the diag matrix of singular values. However, the example below that text is > A <- loadings(ir.pca) %*% diag(ir.pca$sdev) If ir.pca$sdev are the singular values,
2000 Apr 26
1
Factor Rotation
How does one rotate the loadings from a principal component analysis? Help on function prcomp() from package mva mentions rotation: Arguments retx a logical value indicating whether the rotated variables should be returned. Values rotation the matrix of variable loadings (i.e., a matrix whose olumns contain the eigenvectors). The function princomp returns this in the element
2003 May 13
0
bug in promax?
I was wondering whether the following inconsistency of the promax rotation function with the results of a promax rotation using SAS should be considered a bug in the promax function of R. Any comments will be highly appreciated. The following is a loading matrix obtained from a varimax rotation in SAS: # Factor loadings after varimax rotation x <- t(array(c(0.78107, 0.35573,
2001 Sep 21
1
Request for Help: Rotation of PCA Solution or Eigenvectors
Dear R Helper, I am writing because I seek to perform a varimax rotation on my Principal Components Analysis (PCA) solution. (I have been performing PCA's using the eigen command in R.) If you can tell me how to perform this rotation when I use the eigen command (or the princomp command) I would be thrilled. Thanks so much! Wendy Treynor Ann Arbor, MI USA
2012 Jan 18
2
computing scores from a factor analysis
Haj i try to perform a principal component analysis by using a tetrachoric correlation matrix as data input tetra <- tetrachoric (image_na, correct=TRUE) t_matrix <- tetra$rho pca.tetra <- principal(t_matrix, nfactors = 10, n.obs = nrow(image_na), rotate="varimax", scores=TRUE) the problem i have is to compute the individual factor scores from the pca. the code runs perfect
2013 Aug 29
1
Resumen de R-help-es, Vol 54, Envío 22
Hola! No he podido consultar la doc. del paquete ade4, algo debe estar caído en CRAN ahora mismo. Dos cosas sobre la metodología -aun desconociendo los detalles de cómo lo hace ade4: El output de un PCA, los "pesos" de cada variable en las dimensiones de los componentes se interpretan como correlaciones, a mayor valor absoluto mayor asociación variable-componente. Ahora, como tales