similar to: Calculating dispersion in glm

Displaying 20 results from an estimated 10000 matches similar to: "Calculating dispersion in glm"

2000 Apr 19
1
scale factors/overdispersion in GLM: possible bug?
I've been poking around with GLMs (on which I am *not* an expert) on behalf of a student, particularly binomial (standard logit link) nested models with overdispersion. I have one possible bug to report (but I'm not confident enough to be *sure* it's a bug); one comment on the general inconsistency that seems to afflict the various functions for dealing with overdispersion in GLMs
2005 Jun 16
1
mu^2(1-mu)^2 variance function for GLM
Dear list, I'm trying to mimic the analysis of Wedderburn (1974) as cited by McCullagh and Nelder (1989) on p.328-332. This is the leaf-blotch on barley example, and the data is available in the `faraway' package. Wedderburn suggested using the variance function mu^2(1-mu)^2. This variance function isn't readily available in R's `quasi' family object, but it seems to me
1998 Feb 03
2
glm(.) / summary.glm(.); [over]dispersion and returning AIC..
I have been implementing a proposal of Jim Lindsey for glm(.) to return AIC values, and print.glm(.) and print.summary.glm(.) printing them.... however: >>>>> "Jim" == Jim Lindsey <jlindsey@luc.ac.be> writes: Jim> The problem still remains of getting the correct AIC when the user Jim> wants the scale parameter to be fixed. (The calculation should
2004 Jan 20
2
rstandard.glm() in base/R/lm.influence.R
I contacted John Fox about this first, because parts of the file are attributed to him. He says that he didn't write rstandard.glm(), and suggests asking r-devel. As it stands, rstandard.glm() has summary(model)$dispersion outside the sqrt(), while in rstandard.lm(), the sd is already sqrt()ed. This seems to follow stdres() in VR/MASS/R/stdres.R. Of course for the c("poisson",
2006 Mar 31
1
add1() and glm
Hello, I have a question about the add1() function and quasilikelihoods for GLMs. I am fitting quasi-Poisson models using glm(, family = quasipoisson). Technically, with the quasilikelihood approach the deviance does not have the interpretation as a likelihood-based measure of sample information. Functions such as stepAIC() cannot be used. The function add1() returns the change in the scaled
2004 Mar 16
2
glm questions
Greetings, everybody. Can I ask some glm questions? 1. How do you find out -2*lnL(saturated model)? In the output from glm, I find: Null deviance: which I think is -2[lnL(null) - lnL(saturated)] Residual deviance: -2[lnL(fitted) - lnL(saturated)] The Null model is the one that includes the constant only (plus offset if specified). Right? I can use the Null and Residual deviance to
2005 Jun 04
2
glm with a distribution free family
Dear R users, I am trying to fit a glm with a distribution free family, link = log and variance = constant*mu. I guess I have to use the quasi family but the choices of variance are restricted to constant or mu or mu^2..., I don't know the way to choose the variance that I need, i.e. constant*mu. If you have any ideas or advice, please tell me. Thanks, Laetitia Mestdagh Laetitia Mestdagh
2009 Mar 02
2
Unrealistic dispersion parameter for quasibinomial
I am running a binomial glm with response variable the no of mites of two species y->cbind(mitea,miteb) against two continuous variables (temperature and predatory mites) - see below. My model shows overdispersion as the residual deviance is 48.81 on 5 degrees of freedom. If I use quasibinomial to account for overdispersion the dispersion parameter estimate is 2501139, which seems
2010 Apr 09
2
computation of dispersion parameter in quasi-poisson glm
Hi list, can anybody point me to the trick how glm is computing the dispersion parameter in quasi-poisson regression, eg. glm(...,family="quasipoisson")? Thanks &regards, Sven
2008 Mar 17
1
generalized linear mixed models with a beta distribution [Sec=Unclassified]
Craig A Faulhaber wrote: >I am interested in using a generalized linear mixed model with data > that best fits a beta distribution (i.e., the data is bounded between > 0 and 1 but is not binomial). .. >For clarification, here's what I'm trying to model: >I have a beta-distributed response variable (y). I have a fixed-effect >explanatory variable (treatment),
2009 Aug 13
2
glm.nb versus glm estimation of theta.
Hello, I have a question regarding estimation of the dispersion parameter (theta) for generalized linear models with the negative binomial error structure. As I understand, there are two main methods to fit glm's using the nb error structure in R: glm.nb() or glm() with the negative.binomial(theta) family. Both functions are implemented through the MASS library. Fitting the model using these
2000 May 09
4
Dispersion in summary.glm() with binomial & poisson link
Following p.206 of "Statistical Models in S", I wish to change the code for summary.glm() so that it estimates the dispersion for binomial & poisson models when the parameter dispersion is set to zero. The following changes [insertion of ||dispersion==0 at one point; and !is.null(dispersion) at another] will do the trick: "summary.glm" <- function(object, dispersion =
2003 Feb 18
4
glm and overdispersion
Hi, I am performing glm with binomial family and my data show slight overdispersion (HF<1.5). Nevertheless, in order to take into account for this heterogeneity though weak, I use F-test rather than Chi-square (Krackow & Tkadlec, 2001). But surprisingly, outputs of this two tests are exactly similar. What is the reason and how can I scale the output by overdispersion ?? Thank you,
2002 Apr 22
3
glm() function not finding the maximum
Hello, I have found a problem with using the glm function with a gamma family. I have a vector of data, assumed to be generated by a gamma distribution. The parameters of this gamma distribution are estimated in two ways (i) using the glm() function, (ii) "by hand", using the optim() function. I find that the -2*likelihood at the maximum found by (i) is substantially larger than that
2005 Jul 11
2
(no subject)
Hello, The estimate of glm dispersion can be based on the deviance or on the Pearson statistic. I have compared output from R glm() to another statastical package and it appears that R uses the Pearson statistic. I was wondering if it is possible to make use R the deviance instead by modifying the glm(...) function? Thanks for your attention. Kind regards, Robin Smit This e-mail and its
2011 Jan 27
1
Quasi-poisson glm and calculating a qAIC and qAICc...trying to modilfy Bolker et al. 2009 function to work for a glm model
Sorry about re-posting this, it never went out to the mailing list when I posted this to r-help forum on Nabble and was pending for a few days, now that I am subscribe to the mailing list I hope that this goes out: I've been a viewer of this forum for a while and it has helped out a lot, but this is my first time posting something. I am running glm models for richness and abundances. For
2006 Mar 05
1
glm gives t test sometimes, z test others. Why?
I just ran example(glm) and happened to notice that models based on the Gamma distribution gives a t test, while the Poisson models give a z test. Why? Both are b/s.e., aren't they? I can't find documentation supporting the claim that the distribution is more like t in one case than another, except in the Gaussian case (where it really is t). Aren't all of the others approximations
2005 Oct 10
3
Under-dispersion - a stats question?
Hello all: I frequently have glm models in which the residual variance is much lower than the residual degrees of freedom (e.g. Res.Dev=30.5, Res.DF = 82). Is it appropriate for me to use a quasipoisson error distribution and test it with an F distribution? It seems to me that I could stand to gain a much-reduced standard error if I let the procedure estimate my dispersion factor (which
2011 Jun 13
1
glm with binomial errors - problem with overdispersion
Dear all, I am new to R and my question may be trivial to you... I am doing a GLM with binomial errors to compare proportions of species in different categories of seed sizes (4 categories) between 2 sites. In the model summary the residual deviance is much higher than the degree of freedom (Residual deviance: 153.74 on 4 degrees of freedom) and even after correcting for overdispersion by
2005 Aug 08
1
Help with "non-integer #successes in a binomial glm"
Hi, I had a logit regression, but don't really know how to handle the "Warning message: non-integer #successes in a binomial glm! in: eval(expr, envir, enclos)" problem. I had the same logit regression without weights and it worked out without the warning, but I figured it makes more sense to add the weights. The weights sum up to one. Could anyone give me some hint? Thanks a lot!