similar to: Replacing missing values

Displaying 20 results from an estimated 4000 matches similar to: "Replacing missing values"

1999 Aug 24
1
package mlbench updated
Hi, Evgenia and I have copied an updated version of the mlbench package to CRAN which contains several new data sets. We have also changed some of the variable names to avoid name conflicts. Best, -- ------------------------------------------------------------------- Friedrich Leisch Institut f?r Statistik Tel: (+43 1) 58801 10715 Technische
1999 Aug 24
1
package mlbench updated
Hi, Evgenia and I have copied an updated version of the mlbench package to CRAN which contains several new data sets. We have also changed some of the variable names to avoid name conflicts. Best, -- ------------------------------------------------------------------- Friedrich Leisch Institut f?r Statistik Tel: (+43 1) 58801 10715 Technische
2004 May 12
4
missing values imputation
What R functionnalities are there to do missing values imputation (substantial proportion of missing data)? I would prefer to use maximum likelihood methods ; is the EM algorithm implemented? in which package? Thanks Anne ---------------------------------------------------- Anne Piotet Tel: +41 79 359 83 32 (mobile) Email: anne.piotet@m-td.com
2004 Jul 06
5
Converting S-Plus Libraries to R
Dear all! I'd like to do multiple imputation of missing values with s-plus libraries that are provided by Shafer (http://www.stat.psu.edu/~jls/misoftwa.html). I wonder, whether these libraries are compatible or somehow convertible to R (because I don't have S-plus), so that I can use this functions using the R Program. I would be happy if you could tell me, -if it is possible to use
2007 Nov 19
2
Search for a usable pan manual
Hello, I'm looking for a more descriptive manual/tutorial/paper for the pan package. The provided manual and example do not contain any useful hints how to specify a model with more than one variable and leaves several questions unanswered. This also applies to the referred paper "Schafer: Imputation of missing covariates under a multivariate linear mixed model." Can anyone
2011 Jan 31
2
Rubin's rules of multiple imputation
Hello all, if I have multiple imputed data sets, is there a command or function in R in any package you know of to combine those, I know one common MI approach is rubins rules, is there a way to do this using his rules or others? I know theres ways, like using Amelia from Gary King's website to create the imputed data sets, but how to make them into one or combine them for analysis.
2005 Jun 28
1
sample R code for multiple imputation
Hi, I have a big dataset which has many missing values and want to implement Multiple imputation via Monte carlo markov chain by following J Schafer's "Analysis of incomplete multivariate data". I don't know where to begin and is looking for a sample R code that implements multiple imputation with EM, MCMC, etc.... Any help / suggestion will be greatly appreciated. David
2006 Oct 31
3
Missing data analysis in R
I am looking for a book that discusses the theory of multiple imputation (and other methods of dealing with missing data) and, just as importantly, how to implement these methods in R or S-Plus. Ideally, the book would have a structure similar to Faraway (Regression), Pinheiro&Bates (Mixed Effects) and Wood (GAMs) and would be very modern (i.e. published within the last couple of years).
2007 Jan 04
3
randomForest and missing data
Does anyone know a reason why, in principle, a call to randomForest cannot accept a data frame with missing predictor values? If each individual tree is built using CART, then it seems like this should be possible. (I understand that one may impute missing values using rfImpute or some other method, but I would like to avoid doing that.) If this functionality were available, then when the trees
2008 Jun 30
3
Is there a good package for multiple imputation of missing values in R?
I'm looking for a package that has a start-of-the-art method of imputation of missing values in a data frame with both continuous and factor columns. I've found transcan() in 'Hmisc', which appears to be possibly suited to my needs, but I haven't been able to figure out how to get a new data frame with the imputed values replaced (I don't have Herrell's book). Any
2005 Jul 08
2
missing data imputation
Dear R-help, I am trying to impute missing data for the first time using R. The norm package seems to work for me, but the missing values that it returns seem odd at times -- for example it returns negative values for a variable that should only be positive. Does this matter in data analysis, and/or is there a way to limit the imputed values to be within the minimum and maximum of the actual
2003 Jul 25
1
Difficulty replacing NAs using Hmisc aregImpute and Impute
Hello R experts I am using Hmisc aregImpute and Impute (following example on page 105 of The Hmisc and Design Libraries). *My end goal is to have NAs physically replaced in my dataframe. I have read the help pages and example in above sited pdf file, but to no avail. Here is example of what I did. Ph, my data frame, is attached. > xt <- aregImpute (~ q5 + q22rev02 + q28a, n.impute=10,
2011 Oct 10
1
Multiple imputation on subgroups
Dear R-users, I want to multiple impute missing scores, but only for a few subgroups in my data (variable 'subgroups': only impute for subgroups 2 and 3). Does anyone knows how to do this in MICE? This is my script for the multiple imputation: imp <- mice(data, m=20, predictorMatrix=pred, post=post, method=c("", "", "", "",
2006 Sep 25
2
Multiple imputation using mice with "mean"
Hi I am trying to impute missing values for my data.frame. As I intend to use the complete data for prediction I am currently measuring the success of an imputation method by its resulting classification error in my training data. I have tried several approaches to replace missing values: - mean/median substitution - substitution by a value selected from the observed values of a variable - MLE
2004 Aug 27
4
FIML in lme
Hi I was asked if lme can use FIML (Full Information Maximum Likelihood) instead of REML or ML but I don't know the answer. Does anybody know if this is implemented in R? Thanks Francisco
2009 Apr 22
1
Multiple imputations : wicked dataset ? Wicked computers ? Am I cursed ? (or stupid ?)
Dear list, I'd like to use multiple imputations to try and save a somewhat badly mangled dataset (lousy data collection, worse than lousy monitoring, you know that drill... especially when I am consulted for the first time about one year *after* data collection). My dataset has 231 observations of 53 variables, of which only a very few has no missing data. Most variables have 5-10% of
2011 Mar 31
2
fit.mult.impute() in Hmisc
I tried multiple imputation with aregImpute() and fit.mult.impute() in Hmisc 3.8-3 (June 2010) and R-2.12.1. The warning message below suggests that summary(f) of fit.mult.impute() would only use the last imputed data set. Thus, the whole imputation process is ignored. "Not using a Design fitting function; summary(fit) will use standard errors, t, P from last imputation only. Use
2003 Dec 08
1
Design functions after Multiple Imputation
I am a new user of R for Windows, enthusiast about the many functions of the Design and Hmisc libraries. I combined the results of a Cox regression model after multiple imputation (of missing values in some covariates). Now I got my vector of coefficients (and of standard errors). My question is: How could I use directly that vector to run programs such as 'nomogram', 'calibrate',
2011 Dec 02
2
Imputing data
So I have a very big matrix of about 900 by 400 and there are a couple of NA in the list. I have used the following functions to impute the missing data data(pc) pc.na<-pc pc.roughfix <- na.roughfix(pc.na) pc.narf <- randomForest(pc.na, na.action=na.roughfix) yet it does not replace the NA in the list. Presently I want to replace the NA with maybe the mean of the rows or columns or
2010 Aug 10
1
Multiple imputation, especially in rms/Hmisc packages
Hello, I have a general question about combining imputations as well as a question specific to the rms and Hmisc packages. The situation is multiple regression on a data set where multiple imputation has been used to give M imputed data sets. I know how to get the combined estimate of the covariance matrix of the estimated coefficients (average the M covariance matrices from the individual