similar to: Forward stepwise regression

Displaying 20 results from an estimated 10000 matches similar to: "Forward stepwise regression"

2003 Jun 20
2
stepwise regression
Hi, S-PLUS includes the function "stepwise" which can use a variety of methods to conduct stepwise multiple linear regression on a set of predictors. Does a similar function exist in R? I'm having difficulty finding one. If there is one it must be under a different name because I get an error message when I try 'help(stepwise)' in R. Thanks for your help, Andy Taylor
2005 Feb 25
0
Bayesian stepwise (was: Forward Stepwise regression based onpartial F test)
oops, Forgot to cc to the list. Regards, Mike -----Original Message----- From: dr mike [mailto:dr.mike at ntlworld.com] Sent: 24 February 2005 19:21 To: 'Spencer Graves' Subject: RE: [R] Bayesian stepwise (was: Forward Stepwise regression based onpartial F test) Spencer, Obviously the problem is one of supersaturation. In view of that, are you aware of the following? A Two-Stage
2005 Feb 24
2
Forward Stepwise regression based on partial F test
I am hoping to get some advise on the following: I am looking for an automatic variable selection procedure to reduce the number of potential predictor variables (~ 50) in a multiple regression model. I would be interested to use the forward stepwise regression using the partial F test. I have looked into possible R-functions but could not find this particular approach. There is a function
2010 Apr 13
1
stepwise regression-fitting all possible models
Dear All, I am new to R and I would like to do the following: I want to fit a logistic model with 3 predictors and then perform a stepwise regression to select the best possible model using either the AIC/BIC criterion. I have used the stepAIC function which works fine but using this method only likely candidates are evaluated (i.e. not all the models are fitted). We should have 2^3=8 possible
2008 Dec 10
1
Stepwise regression
Hi, I have the response variable 'Y' and four predictors say X1, X2, X3 and X4. Assuming all the assmptions like Y follows normal distribution etc. hold and I want to run linear multiple regression. How do I run the stepwise regression (forward as well as the backward regression). >From other software (i.e. minitab), I know only X1 and X2 are significant so my regression equation
2012 Nov 15
1
Stepwise regression scope: all interacting terms (.^2)
Dear Gurus, Thank you in advance for your assistance. I'm trying to understand scope better when performing stepwise regression using "step." I have a model with a binary response variable and 10 predictor variables. When I perform stepwise regression I define scope=.^2 to allow interactions between all terms. But I am missing something. When I perform stepwise regression (both
2012 Feb 10
1
stepwise variable selection with multiple dependent variables
Good Day, I fit a multivariate linear regression model with 3 dependent variables and several predictors using the lm function. I would like to use stepwise variable selection to produce a set of candidate models. However, when I pass the fitted lm object to step() I get the following error: Error from R: Error in drop1.mlm(fit, scope$drop, scale = scale, trace = trace, k = k, : no
2012 Mar 05
1
Forward stepwise regression using lmStepAIC in Caret
I'm looking for guidance on how to implement forward stepwise regression using lmStepAIC in Caret. The stepwise "direction" appears to default to "backward". When I try to use "scope" to provide a lower and upper model, Caret still seems to default to "backward". Any thoughts on how I can make this work? Here is what I tried: itemonly <-
2008 Oct 22
1
forward stepwise regression using Mallows Cp
So I recognize that: 1. many people hate forward stepwise regression (i've read the archives)--but I need it 2. step() or stepAIC are two ways to get a stepwise regression in R But here's the thing: I can't seem to figure out how to specify that I want the criteria to be Mallow's Cp (and then to subsequently tell me what the Cp stat is). I know it has something to do with
2003 May 08
2
Forward Stepwise regression with stepAIC and step
Dear all, I cannot seem to get the R functions step or stepAIC to perform forward or stepwise regression as I expect. I have enclosed the example data in a dataframe at the end of this mail. Note rubbish is and rnorm(17) variable which I have deliberately added to the data to test the stepwise procedure. I have used wateruse.lm<-lm(waterusage~.,data=wateruse) # Fit full model
2000 Mar 17
2
Windows Memory
I'm sure this question is answered in the help file, but likely I'm not reading it corrected. Running windows version 1.00.0, loading a table (35K rows by 10 columns) from Excel using the read.table command I receive the following message. Error: cons memory (350000 cells) exhausted See "help(Memory)" on how to increase the number of cons cells. >From reading the
2011 Apr 07
1
Automated Fixed Order Stepwise Regression Function
Greetings, I am interested in creating a stepwise fixed order regression function. There's a function for this already called add1( ). The F statistics are calculated using type 2 anova (the SS and the F changes don't match SPSS's). You can see my use of this at the very end of the email. What I want: a function to make an anova table with f changes and delt R^2. I ran into
2005 Dec 08
1
mle.stepwise versus step/stepAIC
Hello, I have a question pertaining to the stepwise regression which I am trying to perform. I have a data set in which I have 14 predictor variables accompanying my response variable. I am not sure what the difference is between the function "mle.stepwise" found in the wle package and the functions "step" or "stepAIC"? When would one use
1999 Jun 18
1
Stepwise model selection question
I use the step() function occasionally, and I think I understand its objective, proper use, and limitations. Now I see stepwise model selection being used in what seems to be an unusual way, and I wonder if it is right or wrong. May I describe? Genetic mapping tries to find where in an animal's genome are genetic elements that influence a particular physical trait. Say there are 100
2007 Apr 01
3
Doing partial-f test for stepwise regression
Hello all, I am trying to figure out an optimal linear model by using stepwise regression which requires partial f-test, I did some Googling on the Internet and realised that someone seemed to ask the question before: Jim Milks <jrclmilks at joimail.com> writes: > Dear all: > > I have a regression model that has collinearity problems (between > three regressor variables). I
2006 Apr 28
4
stepwise regression
Dear all, I have encountered a problem when perform stepwise regression. The dataset have more 9 independent variables, but 7 observation. In R, before performing stepwise, a lm object should be given. fm <- lm(y ~ X1 + X2 + X3 + X11 + X22 + X33 + X12 + X13 + X23) However, summary(fm) will give: Residual standard error: NaN on 0 degrees of freedom Multiple R-Squared: 1, Adjusted
2000 Jun 07
1
forward stepwise selection
Dear R-Help, My problem/bug came to light,when fitting a linear model using stepwise selection. I'd started with the straightfoward command step(lm(y~., dataset)) This worked fine, but because this starts with all the possible explanatory variables, it results in a model with too many explanatory variables. Hence I wanted to start with just a constant and do forward selection, to get a
2009 Oct 22
4
Bayesian regression stepwise function?
Hi everyone, I am wondering if there exists a stepwise regression function for the Bayesian regression model. I tried googling, but I couldn't find anything. I know "step" function exists for regular stepwise regression, but nothing for Bayes. Thanks -- View this message in context: http://www.nabble.com/Bayesian-regression-stepwise-function--tp26013725p26013725.html Sent from
2008 Apr 20
1
Stepwise logistic regression....take too long...
Dear R helpers, I'm trying to build logistic regression model large dataset 360 factors and 850 observations. All 360 factors are known to be good predictors of outcome variable but I have to find best model with maximum 10 factors. I tried to fit full model and use stepAIC function to get best model but unfortenatly, the process takes too long to complete (more than 4 hours)... Is it
2006 Dec 14
3
Stepwise regression
Dear all, I am wondering why the step() procedure in R has the description 'Select a formula-based model by AIC'. I have been using Stata and SPSS and neither package made any reference to AIC in its stepwise procedure, and I read from an earlier R-Help post that step() is really the 'usual' way for doing stepwise (R Help post from Prof Ripley, Fri, 2 Apr 1999 05:06:03