Displaying 20 results from an estimated 1000 matches similar to: "what do you do for 2SLS or 3SLS"
2000 Apr 04
0
stochastic process transition probabilities estimation
Hi all,
I'm new with R (and S), and relatively new to statistics (I'm a
computer scientist), so I ask sorry in advance if my question is silly.
My problem is this: I have a (sample of a) discrete time stochastic
process {X_t} and I want to estimate
Pr{ X_t | X_{t-l_1}, X_{t-l_2}, ..., X_{t-l_k} }
where l_1, l_2, ..., l_k are some fixed time lags. It will be enough for
me to compute
2012 Jul 28
4
quantreg Wald-Test
Dear all,
I know that my question is somewhat special but I tried several times to
solve the problems on my own but I am unfortunately not able to compute the
following test statistic using the quantreg package. Well, here we go, I
appreciate every little comment or help as I really do not know how to tell
R what I want it to do^^
My situation is as follows: I have a data set containing a
2007 Mar 05
1
Heteroskedastic Time Series
Hi R-helpers,
I'm new to time series modelling, but my requirement seems to fall just
outside the capabilities of the arima function in R. I'd like to fit an
ARMA model where the variance of the disturbances is a function of some
exogenous variable. So something like:
Y_t = a_0 + a_1 * Y_(t-1) +...+ a_p * Y_(t-p) + b_1 * e_(t-1) +...+ b_q *
e_(t-q) + e_t,
where
e_t ~ N(0, sigma^2_t),
2009 Jun 19
1
using garchFit() to fit ARMA+GARCH model with exogeneous variables
Hello -
Here's what I'm trying to do. I want to fit a time series y with
ARMA(1,1) + GARCH(1,1), there are also an exogeneous variable x which I
wish to include, so the whole equation looks like:
y_t - \phi y_{t-1} = \sigma_t \epsilon_t + \theta \sigma_{t-1}
\epsilon_{t-1} + c x_t where \epsilon_t are i.i.d. random
variables
\sigma_t^2 = omega + \alpha \sigma_{t-1}^2 + \beta
2002 Apr 09
2
Restricted Least Squares
Hi,
I need help regarding estimating a linear model where restrictions are imposed on the coefficients. An example is as follows:
Y_{t+2}=a1Y_{t+1} + a2 Y_t + b x_t + e_t
restriction
a1+ a2 =1
Is there a function or a package that can estimate the coefficient of a model like this? I want to estimate the coefficients rather than test them.
Thank you for your help
Ahmad Abu Hammour
--------------
2015 Mar 08
0
Seed in 'parallel' vignette
On Tue, Feb 3, 2015 at 10:39 AM, Marius Hofert
<marius.hofert at uwaterloo.ca> wrote:
> Hi,
>
> This is most likely only a minor technicality, but I saw the
> following: On page 6 of the 'parallel' vignette
> (http://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf),
> the random-number generator "L'Ecuyer-CMRG" is said to have seed
>
2007 May 08
2
statistics/correlation question NOT R question
This is not an R question but if anyone can help me, it's much
appreciated.
Suppose I have a series ( stationary ) y_t and a series x_t ( stationary
)and x_t has variance sigma^2_x and epsilon is normal
(0, sigma^2_epsilon )
and the two series have the relation
y_t = Beta*x_t + epsilon
My question is if there are particular values that sigma^2_x and
sigma^2_epsilon have to take in
2015 Feb 03
2
Seed in 'parallel' vignette
Hi,
This is most likely only a minor technicality, but I saw the
following: On page 6 of the 'parallel' vignette
(http://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf),
the random-number generator "L'Ecuyer-CMRG" is said to have seed
"(x_n, x_{n-1}, x_{n-2}, y_n, y_{n-1}, y_{n-2})". However, in L'Ecuyer
et al. (2002), the seed is given with
2007 May 21
1
Sample correlation coefficient question NOT R question
This is a statistics question not an R question. When calculating the
sample correlation coefficient cor(x_t,y_t) between say
two variables, x_t and y_t t=1,.....n ( one can assume that the
variables are in time but I don't think this really matters
for the question ), does someone know where I can find any piece of
literature that says that each (x_j,y_j) pair has
To be independent from the
2009 May 30
0
improve efficiency of a loop
Dear All:
I need advice about efficient looping/vectorization. I am trying to
bootstrap a regression model with one lag of the dependent variable in
the RHS. Specifically, let error^b_(t) be the bootstrapped error of
the regression y_(t) = gamma y_(t-1) + beta x +error_(t) at time (t),
y_(t) is the original dependent variable, and y^b_(t) the bootstraped
y_(t) using parameter estimates gamma and
2011 Dec 01
1
Estimation of AR(1) Model with Markov Switching
Dear R users,
I have been trying to obtain the MLE of the following model
state 0: y_t = 2 + 0.5 * y_{t-1} + e_t
state 1: y_t = 0.5 + 0.9 * y_{t-1} + e_t
where e_t ~ iidN(0,1)
transition probability between states is 0.2
I've generated some fake data and tried to estimate the parameters using the
constrOptim() function but I can't get sensible answers using it. I've tried
using
2011 Nov 12
1
State space model
Hi,
I'm trying to estimate the parameters of a state space model of the
following form
measurement eq:
z_t = a + b*y_t + eps_t
transition eq
y_t+h = (I -exp(-hL))theta + exp(-hL)y_t+ eta_{t+h}.
The problem is that the distribution of the innovations of the transition
equation depend on the previous value of the state variable.
To be exact: y_t|y_{t-1} ~N(mu, Q_t) where Q is a diagonal
2012 Oct 11
2
ccf(x,y) vs. cor() of x and lagged values of y
Hi
I'm computing the correlation between two time-series x_t and y_t-1
(time-series lagged using the lag(y,-1) function) using the cor() function
and the returned value is different from the value of ccf() function at the
same lag. Any ideas why this is so?
Thanks in advance for any hints.
Mihnea
[[alternative HTML version deleted]]
2006 May 19
0
how to estimate adding-regression GARCH Model
---------- Forwarded message ----------
From: ma yuchao <ma.yuchao@gmail.com>
Date: 2006-5-20 ÉÏÎç4:01
Subject: hello, everyone
To: R-help@stat.math.ethz.ch
Hello, R people:
I have a question in using fSeries package--the funciton garchFit and
garchOxFit
if adding a regression to the mean formula, how to estimate the model in
R? using garchFit or garchOxFit?
For example,
2010 Oct 06
1
dlm package: how to specify state space model?
Dear r-users!
I have another question regarding the dlm package and I would be very
happy if someone could give me a hint!
I am using the dlm package to get estimates for an endogenous rate of
capacity utilization over time. The general form of a state space model
is
(1) b_t = G * b_t-1 + w_t w_t ~ N(0,W)
(2) y_t= A' * x_t + H' * b_t + v_t v_t ~ N(0,V)
(Hamilton 1984: 372)
The
2010 Sep 28
0
Time invariant coefficients in a time varying coefficients model using dlm package
Dear R-users,
I am trying to estimate a state space model of the form
(1) b_t = G * b_t-1 + w_t w_t ~ N(0,W)
(2) y_t= A' * x_t + H' * b_t + v_t v_t ~ N(0,V)
(Hamilton 1984: 372)
In particular my estimation in state space form looks like
(3) a3_t = 1 * a3_t-1 + w_t w_t ~ N(0,W)
(4) g_t = (a1, a2) * (1, P_t)' + u_t * a3_t + v_t v_t ~ N(0,V)
where g_t is the
2010 Aug 23
1
Fitting a regression model with with ARMA error
Hi,
I want to fit a regression model with one independent variable. The error
part should be fitted an ARMA process.
For example,
y_t = a + b*x_t + e_t where e_t is modelled as an ARMA process.
Please let me know how do I do this in R. What code should I use?
TIA
Aditya
[[alternative HTML version deleted]]
2010 Aug 13
2
How to compare the effect of a variable across regression models?
Hello,
I would like, if it is possible, to compare the effect of a variable across
regression models. I have looked around but I haven't found anything. Maybe
someone could help? Here is the problem:
I am studying the effect of a variable (age) on an outcome (local recurrence:
lr). I have built 3 models:
- model 1: lr ~ age y = \beta_(a1).age
- model 2: lr ~ age + presentation
2002 Aug 13
1
Ex ante forecasting from structural equation models (SEM package)
Dear Helplist,
I want to produce forecasts from a structural equation model. With the SEM
package the model setup and its estimation is possible. However, I have not
figured out how to obtain ex ante forecasts, i.e. applying the Gauss-Seidel
algorithm to the estimated structural equations for provided values of the
exogenous variables (i.e.: y_t = -inv(A)*B*x_t).
Does anyone know if the there is
2010 Apr 29
1
a question on autocorrelation acf
Hi R users,
where can I find the equations used by acf function to calculate
autocorrelation? I think I misunderstand acf. Doesn't acf use following
equation to calculate autocorrelation?
[image: R(\tau) = \frac{\operatorname{E}[(X_t - \mu)(X_{t+\tau} -
\mu)]}{\sigma^2}\, ,]
If it does, then the autocorrelation of a sine function should give a
cosine; however, the following code gives a