similar to: what do you do for 2SLS or 3SLS

Displaying 20 results from an estimated 1000 matches similar to: "what do you do for 2SLS or 3SLS"

2000 Apr 04
0
stochastic process transition probabilities estimation
Hi all, I'm new with R (and S), and relatively new to statistics (I'm a computer scientist), so I ask sorry in advance if my question is silly. My problem is this: I have a (sample of a) discrete time stochastic process {X_t} and I want to estimate Pr{ X_t | X_{t-l_1}, X_{t-l_2}, ..., X_{t-l_k} } where l_1, l_2, ..., l_k are some fixed time lags. It will be enough for me to compute
2012 Jul 28
4
quantreg Wald-Test
Dear all, I know that my question is somewhat special but I tried several times to solve the problems on my own but I am unfortunately not able to compute the following test statistic using the quantreg package. Well, here we go, I appreciate every little comment or help as I really do not know how to tell R what I want it to do^^ My situation is as follows: I have a data set containing a
2007 Mar 05
1
Heteroskedastic Time Series
Hi R-helpers, I'm new to time series modelling, but my requirement seems to fall just outside the capabilities of the arima function in R. I'd like to fit an ARMA model where the variance of the disturbances is a function of some exogenous variable. So something like: Y_t = a_0 + a_1 * Y_(t-1) +...+ a_p * Y_(t-p) + b_1 * e_(t-1) +...+ b_q * e_(t-q) + e_t, where e_t ~ N(0, sigma^2_t),
2009 Jun 19
1
using garchFit() to fit ARMA+GARCH model with exogeneous variables
Hello - Here's what I'm trying to do. I want to fit a time series y with ARMA(1,1) + GARCH(1,1), there are also an exogeneous variable x which I wish to include, so the whole equation looks like: y_t - \phi y_{t-1} = \sigma_t \epsilon_t + \theta \sigma_{t-1} \epsilon_{t-1} + c x_t where \epsilon_t are i.i.d. random variables \sigma_t^2 = omega + \alpha \sigma_{t-1}^2 + \beta
2002 Apr 09
2
Restricted Least Squares
Hi, I need help regarding estimating a linear model where restrictions are imposed on the coefficients. An example is as follows: Y_{t+2}=a1Y_{t+1} + a2 Y_t + b x_t + e_t restriction a1+ a2 =1 Is there a function or a package that can estimate the coefficient of a model like this? I want to estimate the coefficients rather than test them. Thank you for your help Ahmad Abu Hammour --------------
2015 Mar 08
0
Seed in 'parallel' vignette
On Tue, Feb 3, 2015 at 10:39 AM, Marius Hofert <marius.hofert at uwaterloo.ca> wrote: > Hi, > > This is most likely only a minor technicality, but I saw the > following: On page 6 of the 'parallel' vignette > (http://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf), > the random-number generator "L'Ecuyer-CMRG" is said to have seed >
2007 May 08
2
statistics/correlation question NOT R question
This is not an R question but if anyone can help me, it's much appreciated. Suppose I have a series ( stationary ) y_t and a series x_t ( stationary )and x_t has variance sigma^2_x and epsilon is normal (0, sigma^2_epsilon ) and the two series have the relation y_t = Beta*x_t + epsilon My question is if there are particular values that sigma^2_x and sigma^2_epsilon have to take in
2015 Feb 03
2
Seed in 'parallel' vignette
Hi, This is most likely only a minor technicality, but I saw the following: On page 6 of the 'parallel' vignette (http://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf), the random-number generator "L'Ecuyer-CMRG" is said to have seed "(x_n, x_{n-1}, x_{n-2}, y_n, y_{n-1}, y_{n-2})". However, in L'Ecuyer et al. (2002), the seed is given with
2007 May 21
1
Sample correlation coefficient question NOT R question
This is a statistics question not an R question. When calculating the sample correlation coefficient cor(x_t,y_t) between say two variables, x_t and y_t t=1,.....n ( one can assume that the variables are in time but I don't think this really matters for the question ), does someone know where I can find any piece of literature that says that each (x_j,y_j) pair has To be independent from the
2009 May 30
0
improve efficiency of a loop
Dear All: I need advice about efficient looping/vectorization. I am trying to bootstrap a regression model with one lag of the dependent variable in the RHS. Specifically, let error^b_(t) be the bootstrapped error of the regression y_(t) = gamma y_(t-1) + beta x +error_(t) at time (t), y_(t) is the original dependent variable, and y^b_(t) the bootstraped y_(t) using parameter estimates gamma and
2011 Dec 01
1
Estimation of AR(1) Model with Markov Switching
Dear R users, I have been trying to obtain the MLE of the following model state 0: y_t = 2 + 0.5 * y_{t-1} + e_t state 1: y_t = 0.5 + 0.9 * y_{t-1} + e_t where e_t ~ iidN(0,1) transition probability between states is 0.2 I've generated some fake data and tried to estimate the parameters using the constrOptim() function but I can't get sensible answers using it. I've tried using
2011 Nov 12
1
State space model
Hi, I'm trying to estimate the parameters of a state space model of the following form measurement eq: z_t = a + b*y_t + eps_t transition eq y_t+h = (I -exp(-hL))theta + exp(-hL)y_t+ eta_{t+h}. The problem is that the distribution of the innovations of the transition equation depend on the previous value of the state variable. To be exact: y_t|y_{t-1} ~N(mu, Q_t) where Q is a diagonal
2012 Oct 11
2
ccf(x,y) vs. cor() of x and lagged values of y
Hi I'm computing the correlation between two time-series x_t and y_t-1 (time-series lagged using the lag(y,-1) function) using the cor() function and the returned value is different from the value of ccf() function at the same lag. Any ideas why this is so? Thanks in advance for any hints. Mihnea [[alternative HTML version deleted]]
2006 May 19
0
how to estimate adding-regression GARCH Model
---------- Forwarded message ---------- From: ma yuchao <ma.yuchao@gmail.com> Date: 2006-5-20 ÉÏÎç4:01 Subject: hello, everyone To: R-help@stat.math.ethz.ch Hello, R people: I have a question in using fSeries package--the funciton garchFit and garchOxFit if adding a regression to the mean formula, how to estimate the model in R? using garchFit or garchOxFit? For example,
2010 Oct 06
1
dlm package: how to specify state space model?
Dear r-users! I have another question regarding the dlm package and I would be very happy if someone could give me a hint! I am using the dlm package to get estimates for an endogenous rate of capacity utilization over time. The general form of a state space model is (1) b_t = G * b_t-1 + w_t w_t ~ N(0,W) (2) y_t= A' * x_t + H' * b_t + v_t v_t ~ N(0,V) (Hamilton 1984: 372) The
2010 Sep 28
0
Time invariant coefficients in a time varying coefficients model using dlm package
Dear R-users, I am trying to estimate a state space model of the form (1) b_t = G * b_t-1 + w_t w_t ~ N(0,W) (2) y_t= A' * x_t + H' * b_t + v_t v_t ~ N(0,V) (Hamilton 1984: 372) In particular my estimation in state space form looks like (3) a3_t = 1 * a3_t-1 + w_t w_t ~ N(0,W) (4) g_t = (a1, a2) * (1, P_t)' + u_t * a3_t + v_t v_t ~ N(0,V) where g_t is the
2010 Aug 23
1
Fitting a regression model with with ARMA error
Hi, I want to fit a regression model with one independent variable. The error part should be fitted an ARMA process. For example, y_t = a + b*x_t + e_t where e_t is modelled as an ARMA process. Please let me know how do I do this in R. What code should I use? TIA Aditya [[alternative HTML version deleted]]
2010 Aug 13
2
How to compare the effect of a variable across regression models?
Hello, I would like, if it is possible, to compare the effect of a variable across regression models. I have looked around but I haven't found anything. Maybe someone could help? Here is the problem: I am studying the effect of a variable (age) on an outcome (local recurrence: lr). I have built 3 models: - model 1: lr ~ age y = \beta_(a1).age - model 2: lr ~ age + presentation
2002 Aug 13
1
Ex ante forecasting from structural equation models (SEM package)
Dear Helplist, I want to produce forecasts from a structural equation model. With the SEM package the model setup and its estimation is possible. However, I have not figured out how to obtain ex ante forecasts, i.e. applying the Gauss-Seidel algorithm to the estimated structural equations for provided values of the exogenous variables (i.e.: y_t = -inv(A)*B*x_t). Does anyone know if the there is
2010 Apr 29
1
a question on autocorrelation acf
Hi R users, where can I find the equations used by acf function to calculate autocorrelation? I think I misunderstand acf. Doesn't acf use following equation to calculate autocorrelation? [image: R(\tau) = \frac{\operatorname{E}[(X_t - \mu)(X_{t+\tau} - \mu)]}{\sigma^2}\, ,] If it does, then the autocorrelation of a sine function should give a cosine; however, the following code gives a