Displaying 20 results from an estimated 4000 matches similar to: "nlm recursion problem"
1999 Jan 21
2
nlm question
Hello again
Is there any way (or an alternative non-linear minimiser) that arguments
to the function called in nlm can be passed in version 0.62.4? Like (I
believe) nlmin in a well known other program or optimise in R. Do we use
global variables? Shurely not!
\John
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
r-help mailing list -- Read
2012 Nov 30
2
NA return to NLM routine
Hello,
I am trying to understand a small quirk I came across in R. The
following code results in an error:
k <- c(2, 1, 1, 5, 5)
f <- c(1, 1, 1, 3, 2)
loglikelihood <- function(theta,k,f){
if( theta<1 && theta>0 )
return(-1*sum(log(choose(k,f))+f*log(theta)+(k-f)*log(1-theta)))
return(NA)
}
nlm(loglikelihood ,0.5, k, f )
Running this code results in:
Error
2010 Jun 15
1
Error in nlm : non-finite value supplied by 'nlm'
Hello,
I am trying to compute MLE for non-Gaussian AR(1). The error term follows a difference poisson distribution. This distribution has one parameter (vector[2]).
So in total I want to estimate two parameters: the AR(1) paramter (vector[1]) and the distribution parameter.
My function is the negative loglikelihood derived from a mixing operator.
f=function(vector)
2006 Sep 26
1
warning message in nlm
Dear R-users,
I am trying to find the MLEs for a loglikelihood function (loglikcs39) and
tried using both optim and nlm.
fredcs39<-function(b1,b2,x){return(exp(b1+b2*x))}
loglikcs39<-function(theta,len){
sum(mcs39[1:len]*fredcs39(theta[1],theta[2],c(8:(7+len))) - pcs39[1:len] *
log(fredcs39(theta[1],theta[2],c(8:(7+len)))))
}
theta.start<-c(0.1,0.1)
1. The output from using optim is
2016 Apr 15
1
nlm() giving initials as estimates of parameters
Hi R community
I have written a loglikelihood function which I am minimizing using
nlm().
nlm() is giving me no results...I mean, I am getting initial values as
estimates. No iteration.
I have tried many initials value close to true values and far away from
tru values. But every time I
am getting initial values as estimates and no iteration. Anybody can
guide why this happens.
Thank You
2010 Jul 08
2
Using nlm or optim
Hello,
I am trying to use nlm to estimate the parameters that minimize the
following function:
Predict<-function(M,c,z){
+ v = c*M^z
+ return(v)
+ }
M is a variable and c and z are parameters to be estimated.
I then write the negative loglikelihood function assuming normal errors:
nll<-function(M,V,c,z,s){
n<-length(Mean)
logl<- -.5*n*log(2*pi) -.5*n*log(s) -
2008 May 22
1
Computing Maximum Loglikelihood With "nlm" Problem
Hi,
I tried to compute maximum likelihood under gamma distribution,
using nlm function. The code is this:
__BEGIN__
vsamples<- c(103.9, 88.5, 242.9, 206.6, 175.7, 164.4)
mlogl <- function(alpha, x) {
if (length(alpha) > 1) stop("alpha must be scalar")
if (alpha <= 0) stop("alpha must be positive")
return(- sum(dgamma(x, shape = alpha, log = TRUE)))
2008 Jun 16
1
Error in maximum likelihood estimation.
Dear UseRs,
I wrote the following function to use MLE.
---------------------------------------------
mlog <- function(theta, nx = 1, nz = 1, dt){
beta <- matrix(theta[1:(nx+1)], ncol = 1)
delta <- matrix(theta[(nx+2):(nx+nz+1)], ncol = 1)
sigma2 <- theta[nx+nz+2]
gamma <- theta[nx+nz+3]
y <- as.matrix(dt[, 1], ncol = 1)
x <- as.matrix(data.frame(1,
2010 Jun 15
0
nlm is
Hello,
I am trying to compute MLE for non-Gaussian AR(1). The error term follows a difference poisson distribution. This distribution has one parameter (vector[2]).
So in total I want to estimate two parameters: the AR(1) paramter (vector[1]) and the distribution parameter.
My function is the negative loglikelihood derived from a mixing operator.
f=function(vector)
1997 Jun 06
1
R-beta: nlm
I am trying to use the function "nlm" to find the mle. I want to use a
generic function for the likelihood which would require me to use both the
parameters and the data as arguments. But nlm requires the function to
have only the parameters as arguments for this function (see example below).
> testfun <- function(x,y) sum((x-y)^2) # x - parameters, y - data
>
2003 Oct 24
1
first value from nlm (non-finite value supplied by nlm)
Dear expeRts,
first of all I'd like to thank you for the
quick help on my last which() problem.
Here is another one I could not tackle:
I have data on an absorption measurement which I want to fit
with an voigt profile:
fn.1 <- function(p){
for (i1 in ilong){
ff <- f[i1]
ex[i1] <- exp(S*n*L*voigt(u,v,ff,p[1],p[2],p[3])[[1]])
}
sum((t-ex)^2)
}
out <-
2009 Feb 19
2
Source code for nlm()
Hi,
Where can I find the source code for nlm()? I dowloaded the R2.8.1.tar.gz
file and looked at all the .c and .f files, but couldn't find either nlm.c
or nlm.f
There is an nlm.r file, but that is not useful.
Thanks for any help,
Ravi.
----------------------------------------------------------------------------
-------
Ravi Varadhan, Ph.D.
Assistant Professor, The Center on Aging
2012 Oct 19
2
likelihood function involving integration, error in nlm
Dear R users,
I am trying to find the mle that involves integration.
I am using the following code and get an error when I use the nlm function
d<-matrix(c(1,1,0,0,0,0,0,0,2,1,0,0,1,1,0,1,2,2,1,0),nrow=10,ncol=2)
h<-matrix(runif(20,0,1),10)
integ<-matrix(c(0),nrow=10, ncol=2)
ll<-function(p){
for (k in 1:2){
for(s in 1:10){
integrand<-function(x)
2008 Jun 03
1
nlm behaviour and error
Hi R-Gurus,
I've been cutting along quite nicely with nlm, until
I threw in the following condition in the function that nlm is
minimising:
if (((term*bexp) < 0.0001)) {
#warning(term*bexp, "=term*bexp",psi,"=psi")
theta<-2000
}
Now when I run this function anywhere else, there is no problem, whether
or the if's condition is met.
When
2007 Sep 16
1
Problem with nlm() function.
In the course of revising a paper I have had occasion to attempt to
maximize a rather
complicated log likelihood using the function nlm(). This is at the
demand of a referee
who claims that this will work better than my proposed use of a home-
grown implementation
of the Levenberg-Marquardt algorithm.
I have run into serious hiccups in attempting to apply nlm().
If I provide gradient and
2003 Sep 01
3
error message in nlm()
Hi all,
I have been trying the nlm function but received an error message
which reads:
Error in nlm(intensities ~ f, c(epsilon.spec.start,
epsilon.unspec.start, :
invalid function value in 'nlm' optimizer
The message is generated somewhere in the compiled part, apparently
within the function
static void fcn(int n, const double x[], double *f, function_info
*state)
where a jump
2011 Aug 24
1
problema de selección de valores iniciales en nlm
Hola a todos,
Necesito estimar dos parametros utilizando la función nlm;
fit<-nlm(hood2par,c(x01[i],x02[j]),iterlim=300, catch=x[,c(3,4,5)],sp=.5)
donde hood2par es una logística modificada.
Pero en mi caso, la convergencia de nlm depende de los valores
iniciales de dichos parámetros. Para buscar dichos valores iniciales de
manera automática, genero dos vectores de valores iniciales
2004 Oct 11
1
Puzzled on nlm
Dear R People:
Here is a function to minimized:
>mfun1
function(x,a) {
x[1] <- a[1]*x[2] + a[3] - a[2]*(a[1]-a[2])*a[3]
x[2] <- a[1]*x[1] - a[2]*a[3]
return(x)
}
Here is my first try:
>nlm(mfun1,c(1,1))
Error in f(x, ...) : Argument "a" is missing, with no default
>
>nlm(mfun1,c(1,1),a=c(0.8,0.5,1))
Error in nlm(mfun1, c(1, 1), a = c(0.8, 0.5, 1)) :
2004 Oct 12
2
constrained optimization using nlm/optim?
I'm looking for an example of a simple R script that impliments a
contrained nonlinear function using nlm or optim. I'm not exactly sure how
to impliment the constraints within the objective function that is passed
to nlm/optim.
obj.func <- function( p ) {
x(p) <- unconstrained obj function value
if( constraint1 > something ) {
obj.func <- x(p)
} else {
1999 Dec 09
1
nlm() problem or MLE problem?
I am trying to do a MLE fit of the weibull to some data, which I attach.
fitweibull<-function()
{
rt<-scan("r/rt/data2/triam1.dat")
rt<-sort(rt)
plot(rt,ppoints(rt))
a<-9
b<-.27
fn<-function(p) -sum( log(dweibull(rt,p[1],p[2])) )
cat("starting -log like=",fn(c(a,b)),"\n")
out<-nlm(fn,p=c(a,b), hessian=TRUE)