similar to: svmpath_0.95 uploaded to CRAN

Displaying 20 results from an estimated 8000 matches similar to: "svmpath_0.95 uploaded to CRAN"

2010 Nov 04
0
glmnet_1.5 uploaded to CRAN
This is a new version of glmnet, that incorporates some bug fixes and speedups. * a new convergence criterion which which offers 10x or more speedups for saturated fits (mainly effects logistic, Poisson and Cox) * one can now predict directly from a cv.object - see the help files for cv.glmnet and predict.cv.glmnet * other new methods are deviance() for "glmnet" and coef() for
2011 Apr 20
0
glmnet_1.6 uploaded to CRAN
We have submitted glmnet_1.6 to CRAN This version has an improved convergence criterion, and it also uses a variable screening algorithm that dramatically reduces the time to convergence (while still producing the exact solutions). The speedups in some cases are by a factors of 20 to 50, depending on the particular problem and loss function. See our paper
2011 Apr 20
0
glmnet_1.6 uploaded to CRAN
We have submitted glmnet_1.6 to CRAN This version has an improved convergence criterion, and it also uses a variable screening algorithm that dramatically reduces the time to convergence (while still producing the exact solutions). The speedups in some cases are by a factors of 20 to 50, depending on the particular problem and loss function. See our paper
2010 Nov 19
0
glmnet_1.5.1 uploaded to CRAN
In glmnet_1.5 a poor default was set for the argument type which caused the program to be very slow or even crash when nvar (p) is very large. The argument type (now called type.gaussian) has two options, "covariance" or "naive", and is used for the default family="gaussion" model (squared error loss). When type.gaussian="covariance", all inner-products
2013 Apr 02
0
softImpute_1.0 uploaded to CRAN
SoftImpute is a new package for matrix completion - i.e. for imputing missing values in matrices. SoftImpute was written by myself and Rahul Mazumder. softImpute uses uses squared-error loss with nuclear norm regularization - one can think of it as the "lasso" for matrix approximation - to find a low-rank approximation to the observed entries in the matrix. This low-rank approximation
2013 Apr 02
0
softImpute_1.0 uploaded to CRAN
SoftImpute is a new package for matrix completion - i.e. for imputing missing values in matrices. SoftImpute was written by myself and Rahul Mazumder. softImpute uses uses squared-error loss with nuclear norm regularization - one can think of it as the "lasso" for matrix approximation - to find a low-rank approximation to the observed entries in the matrix. This low-rank approximation
2012 Jul 03
0
Glmnet_1.8 uploaded to CRAN
This is a major revision, with two additional models included. 1) Multiresponse regression - family="mgaussian" Here we have a matrix of M responses, and we fit a series of linear models in parallel. We use a group-lasso penalty on the set of M coefficients for each variable. This means they are all in or out together 2) family="multinomial, type.multinomial="grouped"
2013 Mar 02
0
glmnet 1.9-3 uploaded to CRAN (with intercept option)
This update adds an intercept option (by popular request) - now one can fit a model without an intercept Glmnet is a package that fits the regularization path for a number of generalized linear models, with with "elastic net" regularization (tunable mixture of L1 and L2 penalties). Glmnet uses pathwise coordinate descent, and is very fast. The current list of models covered are:
2013 Mar 02
0
glmnet 1.9-3 uploaded to CRAN (with intercept option)
This update adds an intercept option (by popular request) - now one can fit a model without an intercept Glmnet is a package that fits the regularization path for a number of generalized linear models, with with "elastic net" regularization (tunable mixture of L1 and L2 penalties). Glmnet uses pathwise coordinate descent, and is very fast. The current list of models covered are:
2008 Jun 02
0
New glmnet package on CRAN
glmnet is a package that fits the regularization path for linear, two- and multi-class logistic regression models with "elastic net" regularization (tunable mixture of L1 and L2 penalties). glmnet uses pathwise coordinate descent, and is very fast. Some of the features of glmnet: * by default it computes the path at 100 uniformly spaced (on the log scale) values of the
2008 Jun 02
0
New glmnet package on CRAN
glmnet is a package that fits the regularization path for linear, two- and multi-class logistic regression models with "elastic net" regularization (tunable mixture of L1 and L2 penalties). glmnet uses pathwise coordinate descent, and is very fast. Some of the features of glmnet: * by default it computes the path at 100 uniformly spaced (on the log scale) values of the
2010 Apr 04
0
Major glmnet upgrade on CRAN
glmnet_1.2 has been uploaded to CRAN. This is a major upgrade, with the following additional features: * poisson family, with dense or sparse x * Cox proportional hazards family, for dense x * wide range of cross-validation features. All models have several criteria for cross-validation. These include deviance, mean absolute error, misclassification error and "auc" for logistic or
2010 Apr 04
0
Major glmnet upgrade on CRAN
glmnet_1.2 has been uploaded to CRAN. This is a major upgrade, with the following additional features: * poisson family, with dense or sparse x * Cox proportional hazards family, for dense x * wide range of cross-validation features. All models have several criteria for cross-validation. These include deviance, mean absolute error, misclassification error and "auc" for logistic or
2005 Apr 06
0
Version 0.93 of GAM package on CRAN
I have posted an update to the GAM package. Note that this package implements gam() as described in the "White" S book (Statistical models in S). In particular, you can fit models with lo() terms (local regression) and/or s() terms (smoothing splines), mixed in, of course, with any terms appropriate for glms. A number of bugs in version 0.92 have been fixed; notably 1) some problems
2005 Apr 06
0
Version 0.93 of GAM package on CRAN
I have posted an update to the GAM package. Note that this package implements gam() as described in the "White" S book (Statistical models in S). In particular, you can fit models with lo() terms (local regression) and/or s() terms (smoothing splines), mixed in, of course, with any terms appropriate for glms. A number of bugs in version 0.92 have been fixed; notably 1) some problems
2013 Feb 10
0
glmnet_1.9-1 submitted to CRAN
This new version of glmnet has some bug fixes, and some new features * new arguments lower.limits=-Inf and upper.limits=Inf (defaults shown) for all the coefficients in glmnet. Users can provide limits on coefficients. See the documentation for glmnet. Typical usage: glmnet(x,y,lower=0) Here the argument is abbreviated, and by giving a single value, this uses the same value for all parameters.
2013 Feb 10
0
glmnet_1.9-1 submitted to CRAN
This new version of glmnet has some bug fixes, and some new features * new arguments lower.limits=-Inf and upper.limits=Inf (defaults shown) for all the coefficients in glmnet. Users can provide limits on coefficients. See the documentation for glmnet. Typical usage: glmnet(x,y,lower=0) Here the argument is abbreviated, and by giving a single value, this uses the same value for all parameters.
2005 Dec 13
3
Age of an object?
It would be nice to have a date stamp on an object. In S/Splus this was always available, because objects were files. I have looked around, but I presume this information is not available. -------------------------------------------------------------------- Trevor Hastie hastie at stanford.edu Professor, Department of Statistics, Stanford University Phone:
2010 Apr 28
0
New package for ICA uploaded to CRA
I have uploaded a new package to CRAN called ProDenICA. This fits ICA models directly via product-density estimation of the source densities. This package was promised on page 567 in the 2nd edition of our book 'Elements of Statistical Learning' (Hastie, Tibshirani and Friedman, 2009, Springer) . Apologies that it is so late. The method fits each source density by a tilted gaussian
2010 Apr 28
0
New package for ICA uploaded to CRA
I have uploaded a new package to CRAN called ProDenICA. This fits ICA models directly via product-density estimation of the source densities. This package was promised on page 567 in the 2nd edition of our book 'Elements of Statistical Learning' (Hastie, Tibshirani and Friedman, 2009, Springer) . Apologies that it is so late. The method fits each source density by a tilted gaussian