Displaying 20 results from an estimated 10000 matches similar to: "R interface for MINPACK least squares optimization library"
2008 Mar 13
0
new version of minpack.lm
The package minpack.lm allows nonlinear regression problems to be
addressed with a modification of the Levenberg-Marquardt algorithm based
on the implementation of 'lmder' and 'lmdif' in MINPACK. Version 1.0-8 of
the package is now available on CRAN.
Changes in version 1.0-8 include:
o possibility to obtain standard error estimates on the parameters
via new methods for
2008 Mar 13
0
new version of minpack.lm
The package minpack.lm allows nonlinear regression problems to be
addressed with a modification of the Levenberg-Marquardt algorithm based
on the implementation of 'lmder' and 'lmdif' in MINPACK. Version 1.0-8 of
the package is now available on CRAN.
Changes in version 1.0-8 include:
o possibility to obtain standard error estimates on the parameters
via new methods for
2012 Jan 18
1
Non-linear Least Square Optimization -- Function of two variables.
Dear All,
In the past I have often used minpack (http://bit.ly/zXVls3) relying
on the Levenberg-Marquardt algorithm to perform non-linear fittings.
However, I have always dealt with a function of a single variable.
Is there any difference if the function depends on two variables?
To fix the ideas, please consider the function
f(R,N)=(a/(log(2*N))+b)*R+c*N^d,
where a,b,c,d are fit parameters.
For
2006 Sep 02
1
nonlinear least squares fitting Trust-Region"
Dear Mr Graves,
Thank you very much for your response. Nobody else from this mailing list ventured to reply to me for the two weeks since I posted my question.
"nlminb" and "optim" are just optimization procedures. What I need is not just optimization, but a nonlinear CURVE FITTING procedure. If there is some way to perform nonlinear curve fitting with the
2006 Aug 23
2
nonlinear least squares trust region fitting ?
Hello!
I am running R-2.3.1-i386-1 on Slackware Linux 10.2. I am a former matlab user, moving to R. In matlab, via the cftool, I performed nonlinear curve fitting using the method "nonlinear least squares" with the "Trust-Region" algorithm and not using robust fitting. Is it possible to perform the same analysis in R? I read quite a lot of R documentation, but I could not find
2007 Nov 20
1
How is the Gauss-Newton method compared to Levenberg-Marquardt for curve-fitting?
Hi,
It seems to me that the most suitable method in R for curve-fitting is the use of nls, which uses a Gauss-Newton (GN) algorithm, while the use of the Levenberg-Marquardt (LM) algorithm does not seem to be very stressed in R. According to this [1] by Ripley, 'Levenberg-Marquardt is hardly competitive these days' which could imply the low emphasize on LM in R.
The position of LM is, to
2007 Sep 07
2
Matlab's lsqnonlin
Hi! I'm translating some code from Matlab to R and I found a problem.
I need to translate Matlab's function 'lsqnonlin'
(http://www-ccs.ucsd.edu/matlab/toolbox/optim/lsqnonlin.html) into R,
and at the beginning I thought it would be the same as R's 'optim'. But
then I looked at the definition of 'lsqnonlin' and I don't quite see how
to make
2004 Feb 19
1
Obtaining SE from the hessian matrix
Dear R experts,
In R-intro, under the 'Nonlinear least squares and maximum likelihood
models' there are ttwo examples considered how to use 'nlm' function.
In 'Least squares' the Standard Errors obtained as follows:
After the fitting, out$minimum is the SSE, and out$estimates are the
least squares estimates of the parameters. To obtain the approximate
standard
2007 Feb 21
1
Confindence interval for Levenberg-Marquardt fit
Dear all,
I would like to use the Levenberg-Marquardt algorithm for non-linear
least-squares regression using function nls.lm. Can anybody help me to
find a a way to compute confidence intervals on the fitted
parameters as it is possible for nls (using confint.nls, which does not
work for nls.lm)?
Thank you for your help
Michael
2007 Sep 16
1
Problem with nlm() function.
In the course of revising a paper I have had occasion to attempt to
maximize a rather
complicated log likelihood using the function nlm(). This is at the
demand of a referee
who claims that this will work better than my proposed use of a home-
grown implementation
of the Levenberg-Marquardt algorithm.
I have run into serious hiccups in attempting to apply nlm().
If I provide gradient and
2001 Jan 10
2
Levenberg-Marquardt algorithm
Hi All,
Is the Levenberg-Marquardt algorithm available in R. This method combines the
steepest descent algorithm and Newton's method.
Thanks in Advance,
Dermot MacSweeney.
**************************************************************
Dermot MacSweeney NMRC,
Email: dsweeney at nmrc.ucc.ie Lee Maltings,
Tel: +353 21 904178 Prospect Row,
Fax: +353 21 270271 Cork,
WWW:
2010 Aug 23
1
Fitting Weibull Model with Levenberg-Marquardt regression method
Hi,
I have a problem fitting the following Weibull Model to a set of data.
The model is this one: a-b*exp(-c*x^d)
If I fitted the model with CurveExpert I can find a very nice set of coefficients which create a curve very close to my data, but when I use the nls.lm function in R I can't obtain the same result.
My data are these:
X Y
15 13
50 13
75 9
90 4
With the commercial
2007 Jun 19
1
help w/ nonlinear regression
Dear All,
I'd like to fit a "kind" of logistic model to small data-set using nonlinear least-squares regression. A transcript of R-script are reproduced below. Estimated B and T (the model's coeff, herein B=-8,50 and T=5,46) seem appropriate (at least visually) but are quite diff from those obtained w/ SPSS (Levenberg-Marquardt): B=-19,56 and T=2,37. Am I doing something wrong in
2005 Jun 21
2
nls(): Levenberg-Marquardt, Gauss-Newton, plinear - PI curve fitting
Hello,
i have a problem with the function nls().
This are my data in "k":
V1 V2
[1,] 0 0.367
[2,] 85 0.296
[3,] 122 0.260
[4,] 192 0.244
[5,] 275 0.175
[6,] 421 0.140
[7,] 603 0.093
[8,] 831 0.068
[9,] 1140 0.043
With the nls()-function i want to fit following formula whereas a,b, and c
are variables: y~1/(a*x^2+b*x+c)
With the standardalgorithm
2004 Jan 21
2
derivative of atan(x) and similar functions
Dear R experts.
'D()' function recognizes some of the analitical functions, such as
sin, cos, etc. But I'd like to take analytical derivatives from asin,
atan etc. functions. Are there any R packages providing that features?
Thanks.
--
Timur.
2005 Aug 16
2
Registration with Asterisk server
Dear Asterisk community,
sorry if I'm so stupid, but I couldn't register myself with Asterisk.
I created the [sip-incoming] context in the sip.conf:
[sip-incoming]
type = peer
username = elzhov
port = 5062 ; my kphone listens port 5062
host = 127.0.0.1
Then run Asterisk, and checked peers that are known for Asterisk:
*CLI> sip show peers
Name/username
2003 Aug 01
2
'format' problem
Dear R experts,
format(12345678, digits = 2)
gives
[1] "1.2e+07"
while
format(1234567, digits = 2)
gives
[1] "1234567"
but I'd like the last number to be represented as "1.2e+06" string too.
Where am I wrong?
Thanks,
Timur.
2006 Aug 22
0
NonLinearLeastSquares Trust-Region
Hello!
I am running R-2.3.1-i386-1 on Slackware Linux 10.2. I am a former matlab user, moving to R. In matlab, via the cftool, I performed nonlinear curve fitting using the method "nonlinear least squares" with the "Trust-Region" algorithm and not using robust fitting. Is it possible to perform the same analysis in R? I read quite a lot of R documentation, but I could not
2006 Jan 18
1
Powell's unconstrained derivative-free nonlinear least squares routine, VA05AD
I have used Mike Powell's optimization routine (VA05AD) from the Harwell Subroutine Library (HSL) for more than 20 years. It is no exaggeration to say that it has helped make my career (thanks Mike). I recently learned that I am not alone in this respect - apparently it still has a loyal following in all sorts of fields!
It is an exceedingly fine piece of software - fast, reliable and easy to
2014 Dec 17
2
optimización - resolver sistema - general
Hola a todos,
Simplemente comentar que me tengo encontrado con muchos problemas
de optimización. Mi recomendación general, en el caso multidimensional y
si el tiempo de computación es importante, sería buscar un algoritmo
diseñado para el tipo de problema (evitar los algoritmos más generales
tipo optim si puede haber problemas de mínimos locales). Algunos casos
que tengo resuelto con R