similar to: Least Angle Regression packages for R

Displaying 20 results from an estimated 4000 matches similar to: "Least Angle Regression packages for R"

2007 May 17
0
New version 0.9-7 of lars package
I uploaded a new version of the lars package to CRAN, which incorporates some nontrivial changes. 1) lars now has normalize and intercept options, both defaulted to TRUE, which means the variables are scaled to have unit euclidean norm, and an intercept is included in the model. Either or both can be set to FALSE. 2) lars has an additional type = "stepwise" option; now the list is
2007 May 17
0
New version 0.9-7 of lars package
I uploaded a new version of the lars package to CRAN, which incorporates some nontrivial changes. 1) lars now has normalize and intercept options, both defaulted to TRUE, which means the variables are scaled to have unit euclidean norm, and an intercept is included in the model. Either or both can be set to FALSE. 2) lars has an additional type = "stepwise" option; now the list is
2010 Nov 04
0
glmnet_1.5 uploaded to CRAN
This is a new version of glmnet, that incorporates some bug fixes and speedups. * a new convergence criterion which which offers 10x or more speedups for saturated fits (mainly effects logistic, Poisson and Cox) * one can now predict directly from a cv.object - see the help files for cv.glmnet and predict.cv.glmnet * other new methods are deviance() for "glmnet" and coef() for
2008 Jun 02
0
New glmnet package on CRAN
glmnet is a package that fits the regularization path for linear, two- and multi-class logistic regression models with "elastic net" regularization (tunable mixture of L1 and L2 penalties). glmnet uses pathwise coordinate descent, and is very fast. Some of the features of glmnet: * by default it computes the path at 100 uniformly spaced (on the log scale) values of the
2008 Jun 02
0
New glmnet package on CRAN
glmnet is a package that fits the regularization path for linear, two- and multi-class logistic regression models with "elastic net" regularization (tunable mixture of L1 and L2 penalties). glmnet uses pathwise coordinate descent, and is very fast. Some of the features of glmnet: * by default it computes the path at 100 uniformly spaced (on the log scale) values of the
2010 Apr 04
0
Major glmnet upgrade on CRAN
glmnet_1.2 has been uploaded to CRAN. This is a major upgrade, with the following additional features: * poisson family, with dense or sparse x * Cox proportional hazards family, for dense x * wide range of cross-validation features. All models have several criteria for cross-validation. These include deviance, mean absolute error, misclassification error and "auc" for logistic or
2010 Apr 04
0
Major glmnet upgrade on CRAN
glmnet_1.2 has been uploaded to CRAN. This is a major upgrade, with the following additional features: * poisson family, with dense or sparse x * Cox proportional hazards family, for dense x * wide range of cross-validation features. All models have several criteria for cross-validation. These include deviance, mean absolute error, misclassification error and "auc" for logistic or
2004 Jan 07
0
Statistical Learning and Datamining course based on R/Splus tools
Short course: Statistical Learning and Data Mining Trevor Hastie and Robert Tibshirani, Stanford University Sheraton Hotel Palo Alto, CA Feb 26-27, 2004 This two-day course gives a detailed overview of statistical models for data mining, inference and prediction. With the rapid developments in internet technology, genomics and other high-tech industries, we rely increasingly more on data
2004 Jul 12
0
Statistical Learning and Data Mining Course
Short course: Statistical Learning and Data Mining Trevor Hastie and Robert Tibshirani, Stanford University Georgetown University Conference Center Washington DC September 20-21, 2004 This two-day course gives a detailed overview of statistical models for data mining, inference and prediction. With the rapid developments in internet technology, genomics and other high-tech industries, we
2005 Jan 04
0
Statistical Learning and Data Mining Course
Short course: Statistical Learning and Data Mining Trevor Hastie and Robert Tibshirani, Stanford University Sheraton Hotel, Palo Alto, California February 24 & 25, 2005 This two-day course gives a detailed overview of statistical models for data mining, inference and prediction. With the rapid developments in internet technology, genomics and other high-tech industries, we rely
2006 Mar 07
0
Statistical Learning and Datamining Course
Short course: Statistical Learning and Data Mining II: tools for tall and wide data Trevor Hastie and Robert Tibshirani, Stanford University Sheraton Hotel, Palo Alto, California, April 3-4, 2006. This two-day course gives a detailed overview of statistical models for data mining, inference and prediction. With the rapid developments in internet technology, genomics, financial
2006 Jan 14
0
Data Mining Course
Short course: Statistical Learning and Data Mining II: tools for tall and wide data Trevor Hastie and Robert Tibshirani, Stanford University Sheraton Hotel, Palo Alto, California, April 3-4, 2006. This two-day course gives a detailed overview of statistical models for data mining, inference and prediction. With the rapid developments in internet technology, genomics, financial
2013 Mar 02
0
glmnet 1.9-3 uploaded to CRAN (with intercept option)
This update adds an intercept option (by popular request) - now one can fit a model without an intercept Glmnet is a package that fits the regularization path for a number of generalized linear models, with with "elastic net" regularization (tunable mixture of L1 and L2 penalties). Glmnet uses pathwise coordinate descent, and is very fast. The current list of models covered are:
2013 Mar 02
0
glmnet 1.9-3 uploaded to CRAN (with intercept option)
This update adds an intercept option (by popular request) - now one can fit a model without an intercept Glmnet is a package that fits the regularization path for a number of generalized linear models, with with "elastic net" regularization (tunable mixture of L1 and L2 penalties). Glmnet uses pathwise coordinate descent, and is very fast. The current list of models covered are:
2005 Nov 28
0
glmpath: L1 regularization path for glms
We have uploaded to CRAN the first version of glmpath, which fits the L1 regularization path for generalized linear models. The lars package fits the entire piecewise-linear L1 regularization path for the lasso. The coefficient paths for L1 regularized glms, however, are not piecewise linear. glmpath uses convex optimization - in particular predictor-corrector methods- to fit the
2005 Nov 28
0
glmpath: L1 regularization path for glms
We have uploaded to CRAN the first version of glmpath, which fits the L1 regularization path for generalized linear models. The lars package fits the entire piecewise-linear L1 regularization path for the lasso. The coefficient paths for L1 regularized glms, however, are not piecewise linear. glmpath uses convex optimization - in particular predictor-corrector methods- to fit the
2011 Apr 20
0
glmnet_1.6 uploaded to CRAN
We have submitted glmnet_1.6 to CRAN This version has an improved convergence criterion, and it also uses a variable screening algorithm that dramatically reduces the time to convergence (while still producing the exact solutions). The speedups in some cases are by a factors of 20 to 50, depending on the particular problem and loss function. See our paper
2011 Apr 20
0
glmnet_1.6 uploaded to CRAN
We have submitted glmnet_1.6 to CRAN This version has an improved convergence criterion, and it also uses a variable screening algorithm that dramatically reduces the time to convergence (while still producing the exact solutions). The speedups in some cases are by a factors of 20 to 50, depending on the particular problem and loss function. See our paper
2010 Apr 28
0
New package for ICA uploaded to CRA
I have uploaded a new package to CRAN called ProDenICA. This fits ICA models directly via product-density estimation of the source densities. This package was promised on page 567 in the 2nd edition of our book 'Elements of Statistical Learning' (Hastie, Tibshirani and Friedman, 2009, Springer) . Apologies that it is so late. The method fits each source density by a tilted gaussian
2010 Apr 28
0
New package for ICA uploaded to CRA
I have uploaded a new package to CRAN called ProDenICA. This fits ICA models directly via product-density estimation of the source densities. This package was promised on page 567 in the 2nd edition of our book 'Elements of Statistical Learning' (Hastie, Tibshirani and Friedman, 2009, Springer) . Apologies that it is so late. The method fits each source density by a tilted gaussian