similar to: 2 KM curves on the same plot

Displaying 20 results from an estimated 2000 matches similar to: "2 KM curves on the same plot"

2020 Sep 30
0
2 KM curves on the same plot
Hi John, Brilliant solution and the best sort - when you finally solve your problem by yourself. Jim On Thu, Oct 1, 2020 at 2:52 AM array chip <arrayprofile at yahoo.com> wrote: > > Hi Jim, > > I found out why clip() does not work with lines(survfit.object)! > > If you look at code of function survival:::lines.survfit, in th middle of the code: > > do.clip <-
2010 Apr 01
1
predicted time length differs from survfit.coxph:
Hello All, Does anyone know why length(fit1$time) < length(fit2$n) in survfit.coxph output? Why is the predicted time length is not the same as the number of samples (n)? I tried: example(survfit.coxph). Thanks, parmee > fit2$n [1] 241 > fit2$time [1] 0 31 32 60 61 152 153 174 273 277 362 365 499 517 518 547 [17] 566 638 700 760 791
2009 May 04
1
Nelson-Aalen estimator of cumulative hazard
Hi, I am computing the Nelson-Aalen (NA) estimate of baseline cumulative hazard in two different ways using the "survival" package. I am expecting that they should be identical. However, they are not. Their difference is a monotonically increasing with time. This difference is probably not large to make any impact in the application, but is annoyingly non-trivial for me to just
2013 Nov 14
1
issues with calling predict.coxph.penal (survival) inside a function
Thanks for the reproducable example. I can confirm that it fails on my machine using survival 2-37.5, the next soon-to-be-released version, The issue is with NextMethod, and my assumption that the called routine inherited everything from the parent, including the environment chain. A simple test this AM showed me that the assumption is false. It might have been true for Splus. Working this
2012 Nov 08
2
Comparing nonlinear, non-nested models
Dear R users, Could somebody please help me to find a way of comparing nonlinear, non-nested models in R, where the number of parameters is not necessarily different? Here is a sample (growth rates, y, as a function of internal substrate concentration, x): x <- c(0.52, 1.21, 1.45, 1.64, 1.89, 2.14, 2.47, 3.20, 4.47, 5.31, 6.48) y <- c(0.00, 0.35, 0.41, 0.49, 0.58, 0.61, 0.71, 0.83, 0.98,
2018 Jan 17
1
Assessing calibration of Cox model with time-dependent coefficients
I am trying to find methods for testing and visualizing calibration to Cox models with time-depended coefficients. I have read this nice article <http://journals.sagepub.com/doi/10.1177/0962280213497434>. In this paper, we can fit three models: fit0 <- coxph(Surv(futime, status) ~ x1 + x2 + x3, data = data0) p <- log(predict(fit0, newdata = data1, type = "expected")) lp
2011 Mar 25
2
A question on glmnet analysis
Hi, I am trying to do logistic regression for data of 104 patients, which have one outcome (yes or no) and 15 variables (9 categorical factors [yes or no] and 6 continuous variables). Number of yes outcome is 25. Twenty-five events and 15 variables mean events per variable is much less than 10. Therefore, I tried to analyze the data with penalized regression method. I would like please some of the
2011 Jan 26
2
Extracting the terms from an rpart object
Hello all, I wish to extract the terms from an rpart object. Specifically, I would like to be able to know what is the response variable (so I could do some manipulation on it). But in general, such a method for rpart will also need to handle a "." case (see fit2) Here are two simple examples: fit1 <- rpart(Kyphosis ~ Age + Number + Start, data=kyphosis) fit1$call fit2 <-
2017 Dec 20
1
Nonlinear regression
You also need to reply-all so the mailing list stays in the loop. -- Sent from my phone. Please excuse my brevity. On December 19, 2017 4:00:29 PM PST, Timothy Axberg <axbergtimothy at gmail.com> wrote: >Sorry about that. Here is the code typed directly on the email. > >qe = (Qmax * Kl * ce) / (1 + Kl * ce) > >##The data >ce <- c(15.17, 42.15, 69.12, 237.7, 419.77)
2009 Apr 08
2
Null-Hypothesis
Hello R users, I've used the following help two compare two regression line slopes. Wanted to test if they differ significantly: Hi, I've made a research about how to compare two regression line slopes (of y versus x for 2 groups, "group" being a factor ) using R. I knew the method based on the following statement : t = (b1 - b2) / sb1,b2 where b1 and b2 are the two slope
2004 Dec 20
2
problems with limma
I try to send this message To Gordon Smyth at smyth at vehi,edu.au but it bounced back, so here it is to r-help I am trying to use limma, just downloaded it from CRAN. I use R 2.0.1 on Win XP see the following: > library(RODBC) > chan1 <- odbcConnectExcel("D:/Data/mgc/Chips/Chips4.xls") > dd <- sqlFetch(chan1,"Raw") # all data 12000 > # > nzw <-
2011 Sep 07
2
reporting ANOVA for nested models
I have the following results for an ANOVA comparing two nested models. I wasn't sure how I am supposed to report this result in the area of psychology. Specifically, am I supposed to report the DF's or just the F ratio? I could manually calculate the degrees of freedoms, but there must be a reason why R does not give this information, i.e. those are not conventionally used in the
2008 Jul 02
1
survival package test stats
Hello, Is there a function in the survival package that will allow me to test a subset of independent variables for joint significance? I am thinking along the lines of a Wald, likelihood ratio, or F-test. I am using the survreg procedure to estimate my parameters. Thank you. Geoff Geoffrey Smith Visiting Assistant Professor Department of Finance University of Illinois at Urbana-Champaign
2004 Mar 09
3
update forgets about offset() (PR#6656)
In R1.7 and above (including R 1.9 alpha), 'update.formula' forgets to copy any offset(...) term in the original '.' formula: test> df <- data.frame( x=1:4, y=sqrt( 1:4), z=c(2:4,1)) test> fit1 <- glm( y~offset(x)+z, data=df) test> fit1$call glm(formula = y ~ offset(x) + z, data = df) test> fit1u <- update( fit1, ~.) test> fit1u$call glm(formula = y ~ z,
2011 Apr 02
3
Plotting MDS (multidimensional scaling)
Hi, I just encountered what I thought was strange behavior in MDS. However, it turned out that the mistake was mine. The lesson learned from my mistake is that one should plot on a square pane when plotting results of an MDS. Not doing so can be very misleading. Follow the example of an equilateral triangle below to see what I mean. I hope this helps others to avoid this kind of headache.
2018 Jan 18
1
Time-dependent coefficients in a Cox model with categorical variants
First, as others have said please obey the mailing list rules and turn of First, as others have said please obey the mailing list rules and turn off html, not everyone uses an html email client. Here is your code, formatted and with line numbers added. I also fixed one error: "y" should be "status". 1. fit0 <- coxph(Surv(futime, status) ~ x1 + x2 + x3, data = data0) 2. p
2008 Jan 05
1
Likelihood ratio test for proportional odds logistic regression
Hi, I want to do a global likelihood ratio test for the proportional odds logistic regression model and am unsure how to go about it. I am using the polr() function in library(MASS). 1. Is the p-value from the likelihood ratio test obtained by anova(fit1,fit2), where fit1 is the polr model with only the intercept and fit2 is the full polr model (refer to example below)? So in the case of the
2009 Jul 28
2
A hiccup when using anova on gam() fits.
I stumbled across a mild glitch when trying to compare the result of gam() fitting with the result of lm() fitting. The following code demonstrates the problem: library(gam) x <- rep(1:10,10) set.seed(42) y <- rnorm(100) fit1 <- lm(y~x) fit2 <- gam(y~lo(x)) fit3 <- lm(y~factor(x)) print(anova(fit1,fit2)) # No worries. print(anova(fit1,fit3)) # Likewise. print(anova(fit2,fit3)) #
2011 Oct 06
1
anova.rq {quantreg) - Why do different level of nesting changes the P values?!
Hello dear R help members. I am trying to understand the anova.rq, and I am finding something which I can not explain (is it a bug?!): The example is for when we have 3 nested models. I run the anova once on the two models, and again on the three models. I expect that the p.value for the comparison of model 1 and model 2 would remain the same, whether or not I add a third model to be compared
2009 Jun 08
3
Plotting two regression lines on one graph
Hi! I have fitted two glms assuming a poisson distribution which are: fit1 <- glm(Aids ~ Year, data=aids, family=poisson()) fit2 <- glm(Aids ~ Year+I(Year^2), data=aids, family=poisson()) I am trying to work out how to represent the fitted regression curves of fit1 and fit2 on the one graph. I have tried: graphics.off() plot(Aids ~ Year, data = aids) line(glm(Aids ~ Year,