Displaying 20 results from an estimated 10000 matches similar to: "model frames and update()"
2013 Nov 14
1
issues with calling predict.coxph.penal (survival) inside a function
Thanks for the reproducable example. I can confirm that it fails on my machine using
survival 2-37.5, the next soon-to-be-released version,
The issue is with NextMethod, and my assumption that the called routine inherited
everything from the parent, including the environment chain. A simple test this AM showed
me that the assumption is false. It might have been true for Splus. Working this
2018 Jan 18
1
Time-dependent coefficients in a Cox model with categorical variants
First, as others have said please obey the mailing list rules and turn of
First, as others have said please obey the mailing list rules and turn off html, not everyone uses an html email client.
Here is your code, formatted and with line numbers added. I also fixed one error: "y" should be "status".
1. fit0 <- coxph(Surv(futime, status) ~ x1 + x2 + x3, data = data0)
2. p
2012 Aug 09
1
basehaz() in package survival and warnings with coxph
I've never seen this, and have no idea how to reproduce it.
For resloution you are going to have to give me a working example of the
failure.
Also, per the posting guide, what is your sessionInfo()?
Terry Therneau
On 08/09/2012 04:11 AM, r-help-request at r-project.org wrote:
> I have a couple of questions with regards to fitting a coxph model to a data
> set in R:
>
> I have a
2012 Aug 08
1
basehaz() in package 'Survival' and warnings() with coxph
Hello,
I have a couple of questions with regards to fitting a coxph model to a data
set in R:
I have a very large dataset and wanted to get the baseline hazard using the
basehaz() function in the package : 'survival'.
If I use all the covariates then the output from basehaz(fit), where fit is
a model fit using coxph(), gives 507 unique values for the time and the
corresponding cumulative
2007 Dec 05
4
coxme frailty model standard errors?
Hello,
I am running R 2.6.1 on windows xp
I am trying to fit a cox proportional hazard model with a shared
Gaussian frailty term using coxme
My model is specified as:
nofit1<-coxme(Surv(Age,cen1new)~ Sex+bo2+bo3,random=~1|isl,data=mydat)
With x1-x3 being dummy variables, and isl being the community level
variable with 4 levels.
Does anyone know if there is a way to get the standard error
2009 Apr 03
2
Schoenfeld Residuals
Dear All,
Sorry to bother you again.
I have a model:
coxfita=coxph(Surv(rem.Remtime/365,rem.Rcens)~all.sex,data=nearma)
and I'm trying to do a plot of Schoenfeld residuals using the code:
plot(cox.zph(coxfita))
abline(h=0,lty=3)
The error message I get is:
Error in plot.window(...) : need finite 'ylim' values
In addition: Warning messages:
1: In sqrt(x$var[i, i] * seval) : NaNs
2009 Feb 25
3
survival::survfit,plot.survfit
I am confused when trying the function survfit.
my question is: what does the survival curve given by plot.survfit mean?
is it the survival curve with different covariates at different points?
or just the baseline survival curve?
for example, I run the following code and get the survival curve
####
library(survival)
fit<-coxph(Surv(futime,fustat)~resid.ds+rx+ecog.ps,data=ovarian)
2008 Apr 17
1
survreg() with frailty
Dear R-users,
I have noticed small discrepencies in the reported estimate of the
variance of the frailty by the print method for survreg() and the
'theta' component included in the object fit:
# Examples in R-2.6.2 for Windows
library(survival) # version 2.34-1 (2008-03-31)
# discrepancy
fit1 <- survreg(Surv(time, status) ~ rx + frailty(litter), rats)
fit1
fit1$history[[1]]$theta
2011 Sep 12
1
coxreg vs coxph: time-dependent treatment
Dear List,
After including cluster() option the coxreg (from eha package)
produces results slightly different than that of coxph (from survival)
in the following time-dependent treatment effect calculation (example
is used just to make the point). Will appreciate any explaination /
comment.
cheers,
Ehsan
############################
require(survival)
require(eha)
data(heart)
# create weights
2013 Feb 13
1
WriteXLS: 'object not found' error within function
Dear All,
I am using WriteXLS to write tables with multiple sheets with the command:
WriteXLS("tables", ExcelFileName = fileName, SheetNames = tableList, perl = "perl",
verbose = FALSE, Encoding = c("UTF-8", "latin1"),
row.names = TRUE, col.names = TRUE,
AdjWidth = TRUE, AutoFilter = FALSE, BoldHeaderRow = FALSE,
2010 Apr 01
1
predicted time length differs from survfit.coxph:
Hello All,
Does anyone know why length(fit1$time) < length(fit2$n) in survfit.coxph
output? Why is the predicted time length is not the same as the number of
samples (n)?
I tried: example(survfit.coxph).
Thanks,
parmee
> fit2$n
[1] 241
> fit2$time
[1] 0 31 32 60 61 152 153 174 273 277 362
365 499 517 518 547
[17] 566 638 700 760 791
2005 Jun 25
1
Confidence interval bars on Lattice barchart with groups
I am trying to add confidence (error) bars to lattice barcharts (and
dotplots, and xyplots). I found this helpful message from Deepayan
Sarkar and based teh code below on it:
http://finzi.psych.upenn.edu/R/Rhelp02a/archive/50299.html
However, I can't get it to work with groups, as illustrated. I am sure I
am missing something elementary, but I am unsure what.
Using R 2.1.1 on various
2009 May 04
1
Nelson-Aalen estimator of cumulative hazard
Hi,
I am computing the Nelson-Aalen (NA) estimate of baseline cumulative hazard in two different ways using the "survival" package. I am expecting that they should be identical. However, they are not. Their difference is a monotonically increasing with time. This difference is probably not large to make any impact in the application, but is annoyingly non-trivial for me to just
2010 Mar 26
4
Creating a vector of categories
Hi,
I have a column in a data frame looking something like:
$sex $language $count
male english 0
male english 0
female english 32
male spanish 154
female english 11
female norweigan 7
and so on.
What I want to do is to order these in to categories, for instance one
category where count>=0 & count<10 and so on..
I want my data to turn out looking something like:
male
2007 Apr 17
3
Extracting approximate Wald test (Chisq) from coxph(..frailty)
Dear List,
How do I extract the approximate Wald test for the
frailty (in the following example 17.89 value)?
What about the P-values, other Chisq, DF, se(coef) and
se2? How can they be extracted?
######################################################>
kfitm1
Call:
coxph(formula = Surv(time, status) ~ age + sex +
disease + frailty(id,
dist = "gauss"), data = kidney)
2008 Apr 21
2
Trend test for survival data
Hello,
is there a R package that provides a log rank trend test
for survival data in >=3 treatment groups?
Or are there any comparable trend tests for survival data in R?
Thanks a lot
Markus
--
Dipl. Inf. Markus Kreuz
Universitaet Leipzig
Institut fuer medizinische Informatik, Statistik und Epidemiologie (IMISE)
Haertelstr. 16-18
D-04107 Leipzig
Tel. +49 341 97 16 276
Fax. +49 341 97 16
2007 Nov 09
2
wrapper for coxph with a subset argument
Dear R-help -
Thanks to those who replied yesterday (Christos H. and Thomas L.)
regarding my question on coxph and model formula, the answers worked
perfectly.
My new question involves the following.
I want to run several coxph models (package survival) with the same
dataset, but different subsets of that dataset.
I have found a way to do this, described below in functions subwrap1 and
2008 May 09
2
how to check linearity in Cox regression
Hi, I am just wondering if there is a test available for testing if a linear fit of an independent variable in a Cox regression is enough? Thanks for any suggestions.
John Zhang
____________________________________________________________________________________
[[elided Yahoo spam]]
2018 Jan 17
1
Assessing calibration of Cox model with time-dependent coefficients
I am trying to find methods for testing and visualizing calibration to Cox
models with time-depended coefficients. I have read this nice article
<http://journals.sagepub.com/doi/10.1177/0962280213497434>. In this paper,
we can fit three models:
fit0 <- coxph(Surv(futime, status) ~ x1 + x2 + x3, data = data0) p <-
log(predict(fit0, newdata = data1, type = "expected")) lp
2010 Aug 11
4
Arbitrary number of covariates in a formula
Hello!
I have something like this:
test1 <- data.frame(intx=c(4,3,1,1,2,2,3),
status=c(1,1,1,0,1,1,0),
x1=c(0,2,1,1,1,0,0),
x2=c(1,1,0,0,2,2,0),
sex=c(0,0,0,0,1,1,1))
and I can easily fit a cox model:
library(survival)
coxph(Surv(intx,status) ~ x1 + x2 + strata(sex),test1)
However, I want to