similar to: Fail to install xgboost

Displaying 20 results from an estimated 110 matches similar to: "Fail to install xgboost"

2018 Apr 03
0
xgboost: problems with predictions for count data [SEC=UNCLASSIFIED]
Hi All, I tried to use xgboost to model and predict count data. The predictions are however not as expected as shown below. # sponge count data in library(spm) library(spm) data(sponge) data(sponge.grid) names(sponge) [1] "easting" "northing" "sponge" "tpi3" "var7" "entro7" "bs34" "bs11"
2017 Oct 20
0
What exactly is an dgCMatrix-class. There are so many attributes.
> On Oct 20, 2017, at 11:11 AM, C W <tmrsg11 at gmail.com> wrote: > > Dear R list, > > I came across dgCMatrix. I believe this class is associated with sparse > matrix. Yes. See: help('dgCMatrix-class', pack=Matrix) If Martin Maechler happens to respond to this you should listen to him rather than anything I write. Much of what the Matrix package does appears
2017 Oct 20
0
What exactly is an dgCMatrix-class. There are so many attributes.
Subsetting using [] vs. head(), gives different results. R code: > head(train$data, 5) [1] 0 0 1 0 0 > train$data[1:5, 1:5] 5 x 5 sparse Matrix of class "dgCMatrix" cap-shape=bell cap-shape=conical cap-shape=convex [1,] . . 1 [2,] . . 1 [3,] 1 .
2017 Oct 20
3
What exactly is an dgCMatrix-class. There are so many attributes.
Dear R list, I came across dgCMatrix. I believe this class is associated with sparse matrix. I see there are 8 attributes to train$data, I am confused why are there so many, some are vectors, what do they do? Here's the R code: library(xgboost) data(agaricus.train, package='xgboost') data(agaricus.test, package='xgboost') train <- agaricus.train test <- agaricus.test
2017 Oct 21
0
What exactly is an dgCMatrix-class. There are so many attributes.
>>>>> C W <tmrsg11 at gmail.com> >>>>> on Fri, 20 Oct 2017 15:51:16 -0400 writes: > Thank you for your responses. I guess I don't feel > alone. I don't find the documentation go into any detail. > I also find it surprising that, >> object.size(train$data) > 1730904 bytes >>
2017 Oct 21
1
What exactly is an dgCMatrix-class. There are so many attributes.
> On Oct 21, 2017, at 7:50 AM, Martin Maechler <maechler at stat.math.ethz.ch> wrote: > >>>>>> C W <tmrsg11 at gmail.com> >>>>>> on Fri, 20 Oct 2017 15:51:16 -0400 writes: > >> Thank you for your responses. I guess I don't feel >> alone. I don't find the documentation go into any detail. > >> I also find
2017 Oct 20
4
What exactly is an dgCMatrix-class. There are so many attributes.
Thank you for your responses. I guess I don't feel alone. I don't find the documentation go into any detail. I also find it surprising that, > object.size(train$data) 1730904 bytes > object.size(as.matrix(train$data)) 6575016 bytes the dgCMatrix actually takes less memory, though it *looks* like the opposite. Cheers! On Fri, Oct 20, 2017 at 3:22 PM, David Winsemius
2018 May 03
0
GA/SWARM Hyperparameter (HP) Optimisation for Classification based Machine Learning
Hi, I believe that Caret uses a ?grid-serach approach. I was wondering if: 1 There are more efficient implementations for HP tuning for classification algos?(eg XGboost, CatBoost, SVM, RF etc),?using say?GM/SWARM approaches, akin to Google's approach AutoML for Image related Net problems? 2 This one is most probably wishful thinking, but is anyone looking at GM/SWARM at HP tuning across models
2020 Jan 03
2
A modern object-oriented machine learning framework in R
Estimados amigos: Esta tarde he estado probando la librería mlr3, que me resulta muy interesante para trabajos de clasificación. En concreto, para entender su funcionamiento he probado un ejemplo simple (viene en CRAN). Sin embargo, cuando cambio el parámetro de clasifiación en la función de aprendizaje, me aparece el error siguiente: *Error: Element with key
2020 Jan 04
2
A modern object-oriented machine learning framework in R
Estimadísimo Carlos: Muchísimas gracias por responderme y hacerlo tan rápido. Contemplé esa posibilidad, es decir, que el hiperparámetro estuviera suponiendo un problema, y probé de esta forma: > learner <- lrn("classif.ranger", num.trees = 5, mtry = NULL) Error: Element with key 'classif.ranger' not found in DictionaryLearner!
2017 Aug 11
0
Revolutions blog: July 2017 roundup
Since 2008, Microsoft (formerly Revolution Analytics) staff and guests have written about R every weekday at the Revolutions blog (http://blog.revolutionanalytics.com) and every month I post a summary of articles from the previous month of particular interest to readers of r-help. In case you missed them, here are some articles related to R from the month of July: A tutorial on using the
2017 Aug 01
0
How automatic Y on install y/n prompts?
You should read the section on Indexing in the Introduction to R document that comes with R, regarding $ and `[[`. -- Sent from my phone. Please excuse my brevity. On August 1, 2017 2:44:18 AM PDT, Dimlak Gorkehgz <rain8dome9 at gmail.com> wrote: >You are right, maintainer does keep a list of model's packages. > >So how do I use a variable instead of $adaboost$? >
2017 Aug 01
1
How automatic Y on install y/n prompts?
You are right, maintainer does keep a list of model's packages. So how do I use a variable instead of $adaboost$? getModelInfo()$adaboost$library Also, server not found: http://rwiki.sciviews.org/doku.php?id=getting-started:reference-cards:getting-help On Tue, Aug 1, 2017 at 11:46 AM, Bert Gunter <bgunter.4567 at gmail.com> wrote: > I have provided you all the
2018 Feb 08
2
sparse.model.matrix Generates Non-Existent Factor Levels if Ord.factor Columns Present
Good day, Sometimes, sparse.model.matrix outputs a dgCMatrix which has column names consisting of factor levels that were not in the original dataset. The first factor appears to be correctly transformed, but the following factors don't. For example: diamonds <- as.data.frame(ggplot2::diamonds) > colnames(sparse.model.matrix(~ . -1, diamonds)) [1] "carat"
2017 Jul 01
2
OFFTOPIC: SPARK Y H2O
Buenas erreros!! Una cuestión de las que tengo ciertas dudas es saber en que se diferencian Spark y H2o, si son competencia, si valen para lo mismo o no.... Según lo poco que se, Spark es una manera de agilizar el Map-Reduce, y con la libreria MLlib, puedes hacer datamining de grandes datasheets, y si lo conectas con R o con Python, puedes usar ese lenguaje. H2O es una herramienta que nos
2017 Feb 19
2
Reconocimiento de texto
Buenas Juan, Ya había visto ese paquete pero creo que no soy capaz de explotarlo del todo. Yo lo que tengo son imágenes solo de números y sobre una superficie gris. Entonces me gustaría poder entrenar a mi “modelo” para que solo muestre como posible salida números y siempre en un fondo gris. Aun asi, muchas gracias por la recomendación Jesús Enviado desde
2018 Feb 19
3
gbm.step para clasificación no binaria
Hola de nuevo. Se me olvidaba la principal razón para utilizar gbm.step del paquete dismo. Como sabéis, los boosted si sobreajustan (a diferencia de los random forest o cualquier otro bootstrap) pero gbm.step hace validación cruzada para determinar el nº óptimo de árboles y evitarlo. Es fundamental. La opción que me queda, Carlos, es hacerlo con gbm, pero muchas veces, y usar el
2018 Jan 22
2
Random Forests
Muchas gracias Carlos, como siempre. Es raro que se me pasase. En su momento miré todos los argumentos del RF, como hago siempre, pero ese lo había olvidado. La verdad es que funcionaba estupendamente, pero me parecía extraño. Aunque dado que los RF no sobreajustan, no hay problema con que sus árboles sean todo lo grandes que quieras. Lo he testado con una base de datos externa y explica
2017 Jun 04
2
CV en R
Si nos dices el tipo de problema que estás intentando solucionar y el tamaño del dataset podemos recomendarte algo más. En tu pseudo-código mezclas algoritmos supervisados y no-supervisados. Además de ranger, daría alguna oportunidad a "gbm" o como no a "xgboost". Y éstos los probaría dentro de H2O. Saludos, Carlos Ortega www.qualityexcellence.es El 4 de junio de 2017,
2017 Jun 04
2
CV en R
H2O va bien (muy bien) tanto en un ordenador sobremesa/portátil y sobre un clúster. En uno de sobremesa si tienes buena RAM y muchos cores, mejor. Y no tienes porqué usar Spark si no necesitas una solución tiempo real o "near real-time". H2O tiene otra solución para interaccionar con Spark (Sparkling Water). Incluso sobre un clúster, puedes usar "sparklyr" y