similar to: Optimización MINLP

Displaying 20 results from an estimated 500 matches similar to: "Optimización MINLP"

2014 Oct 08
2
Optimización con restricciones lineales
Hola a todos, Estoy intentando resolver un problema de optimización con R con restricciones lineales, pero no consigo incluir dichas restricciones. Es decir, f<-function(w){ sd(...) # desviación típica de ciertos datos } optim(rep(1/2,8),fn = f,lower=0,upper=1,method='L-BFGS-B') # no se como incluir aquí las restricciones Las restricciones son: la suma de los w_i es 1 y todos los
2012 Oct 18
7
summation coding
I would like to code the following in R: a1(b1+b2+b3) + a2(b1+b3+b4) + a3(b1+b2+b4) + a4(b1+b2+b3) or in summation notation: sum_{i=1, j\neq i}^{4} a_i * b_i I realise this is the same as: sum_{i=1, j=1}^{4} a_i * b_i - sum_{i=j} a_i * b_i would appreciate some help. Thank you. -- View this message in context: http://r.789695.n4.nabble.com/summation-coding-tp4646678.html Sent from the R
2008 May 16
1
Making slope coefficients ``relative to 0''.
I am interested in whether the slopes in a linear model are different from 0. I.e. I would like to obtain the slope estimates, and their standard errors, ``relative to 0'' for each group, rather than relative to some baseline. Explicitly I would like to write/represent the model as y = a_i + b_i*x + E i = 1, ..., K, where x is a continuous variate and i indexes groups (levels of a
2000 Mar 31
2
linear models
Dear R users, I have a couple of linear model related questions. 1) How do I produce a fixed effect linear model using lme? I saw somewhere (this may be Splus documentation since I use Splus and R interchangeably) that using lme(...,random= ~ -1 | groups,...) works, but it gives the same as lme(...,random= ~ 1 | groups,...), ie. fits a random effect intercept term. The reason why I want to do
2010 Feb 03
1
Package plm & heterogenous slopes
Dear r-helpers, I am working with plm package. I am trying to fit a fixed effects (or a 'within') model of the form y_it = a_i + b_i*t + e_it, i.e. a model with an individual-specific intercept and an individual- specific slope. Does plm support this directly? Thanks in advance! Otto Kassi
2001 May 23
2
help: exponential fit?
Hi there, I'm quite new to R (and statistics), and I like it (both)! But I'm a bit lost in all these packages, so could someone please give me a hint whether there exists a package for fitting exponential curves (of the type t --> \sum_i a_i \exp( - b_i t)) on a noisy signal? In fact monoexponential decay + polynomial growth is what I'd like to try. Thanks in advance,
2002 Dec 10
3
clogit and general conditional logistic regression
Can someone clarify what I cannot make out from the documentation? The function 'clogit' in the 'survival' package is described as performing a "conditional logistic regression". Its return value is stated to be "an object of class clogit which is a wrapper for a coxph object." This suggests that its usefulness is confined to the sort of data which arise in
2012 Mar 08
1
Panel models: Fixed effects & random coefficients in plm
Hello, I am using {plm} to estimate panel models. I want to estimate a model that includes fixed effects for time and individual, but has a random individual effect for the coefficient on the independent variable. That is, I would like to estimate the model: Y_it = a_i + a_t + B_i * X_it + e_it Where i denotes individuals, t denotes time, X is my independent variable, and B (beta) is the
2024 Nov 01
1
Fwd: OPTIMIZACIÓN
---------- Forwarded message --------- De: Jose Betancourt Bethencourt <betanster en gmail.com> Date: sáb, 26 oct 2024 a las 16:14 Subject: OPTIMIZACIÓN To: <r-help-es-request en r-project.org> Estimados Corri este código y funciona todo bien , menos la ultima parte de optimización apreciaria su ayuda José # Cargar bibliotecas necesarias library(deSolve) library(optimx) #
2015 Jun 09
2
Sobre optimización con Rcpp.-
Hola compañeros de R, Antes he utilizado Rcpp (y armadillo) para lograr velocidad en procesos llenos de bucles y de álgebra lineal; pero no me había visto en la necesidad de maximizar (optimizar) ninguna función (una verosimilitud, en este caso). ¿Alguien tiene conocimiento de cuál es la forma más conveniente para optimizar funciones dentro de un programa en Rcpp? ¡Muchas gracias! -- «No soy
2009 Nov 07
0
solution design for a large scale (> 50G) R computing problem
Hi, I am tackling a computing problem in R that involves large data. Both time and memory issues need to be seriously considered. Below is the problem description and my tentative approach. I would appreciate if any one can share thoughts on how to solve this problem more efficiently. I have 1001 multidimensional arrays -- A, B1, ..., B1000. A takes about 500MB in memory and B_i takes 100MB. I
2009 Aug 06
1
solving system of equations involving non-linearities
Hi, I would appreciate if someone could help me on track with this problem. I want to compute some parameters from a system of equations given a number of sample observations. The system looks like this: sum_i( A+b_i>0 & A+b_i>C+d_i) = x sum_i( C+d_i>0 & C+d_i>A+b_i) = y sum_i( exp(E+f_i) * ( A+b_i>0 & A+b_i>C+d_i) = z A, C, E are free variables while the other
2003 Oct 23
1
Variance-covariance matrix for beta hat and b hat from lme
Dear all, Given a LME model (following the notation of Pinheiro and Bates 2000) y_i = X_i*beta + Z_i*b_i + e_i, is it possible to extract the variance-covariance matrix for the estimated beta_i hat and b_i hat from the lme fitted object? The reason for needing this is because I want to have interval prediction on the predicted values (at level = 0:1). The "predict.lme" seems to
2017 Dec 03
1
Discourage the weights= option of lm with summarized data
Peter, This is a highly structured text. Just for the discussion, I separate the building blocks, where (D) and (E) and (F) are new: BEGIN OF TEXT -------------------- (A) Non-?NULL? ?weights? can be used to indicate that different observations have different variances (with the values in ?weights? being inversely proportional to the variances); (B) or equivalently, when the elements of
2010 Aug 24
1
Constrained non-linear optimisation
I'm relatively new to R, but I'm attempting to do a non-linear maximum likelihood estimation (mle) in R, with the added problem that I have a non-linear constraint. The basic problem is linear in the parameters (a_i) and has only one non-linear component, b, with the problem being linear when b = 0 and non-linear otherwise. Furthermore, f(a_i) <= b <= g(a_i) for some (simple) f
2006 Oct 21
2
problem with mode of marginal distriubtion of rdirichlet{gtools}
Hi all, I have a problem using rdirichlet{gtools}. For Dir( a1, a2, ..., a_n), its mode can be found at $( a_i -1)/ ( \sum_{i}a_i - n)$; The means are $a_i / (\sum_{i} a_i ) $; I tried to study the above properties using rdirichlet from gtools. The code are: ############## library(gtools) alpha = c(1,3,9) #totoal=13 mean.expect = c(1/13, 3/13, 9/13) mode.expect = c(0, 2/10, 8/10) #
2006 Jan 23
1
weighted likelihood for lme
Dear R users, I'm trying to fit a simple random intercept model with a fixed intercept. Suppose I want to assign a weight w_i to the i-th contribute to the log-likelihood, i.e. w_i * logLik_i where logLik_i is the log-likelihood for the i-th subject. I want to maximize the likelihood for N subjects Sum_i {w_i * logLik_i} Here is a simple example to reproduce
2014 Dec 17
2
optimización - resolver sistema - general
Estimados Reailizo una pregunta general, casi desconociendo. Se me ocurrió explorar lo siguiente: hay ejemplos de programación lineal o utilizando la herramienta solver de excel, donde se realizan algunos cálculos, lo más sencillo de comprender y documentado (todos lados) es una cantidad de productos, un costo de compra, un costo de venta, una cantidad para invertir y ¿cuánto me conviene
2003 Dec 15
1
distribution of second order statistic
Hi, I am getting some weird results here and I think I am missing something. I am trying to program a function that for a set of random variables drawn from uniform distributions plots that distribution of the second order statistic of the ordered variables. (ie I have n uniform distributions on [0, w_i] for w_i different w_j and i=1..n. I want to plot the distribution of the second order
2010 Oct 27
1
GLM and Weights
Dear all, I am trying to use the 'glm' package as part of a semiparametric technique that involves weighting a likelihood in various ways, i.e. L(theta;data)=Sum_i=1,..,n (W_i)(log L(theta;data_i)) Where W_i can be a kernel weighting function, or W_i can be an indicator of 'non-missingness' divided by a propensity score. In a Monte Carlo exercise, the option glm(...,