Displaying 20 results from an estimated 2000 matches similar to: "Error message"
2003 Sep 25
1
Error from gls call (package nlme)
Hi
I have a huge array with series of data. For each cell in the array I
fit a linear model, either using lm() or gls()
with lm() there is no problem, but with gls() I get an error:
Error in glsEstimate(glsSt, control = glsEstControl) :
computed gls fit is singular, rank 2
as soon as there are data like this:
> y1 <- c(0,0,0,0)
> x1 <- c(0,1,1.3,0)
> gls(y1~x1)
2000 Mar 07
1
Problems with nlme (PR#471)
Dear R developers,
first of all let me join the chorus of congratulations for the release
of R 1.0.0. Well, done!
Unfortunately, I find it necessary to e-mail in a bug report regarding
the `nlme' package. On my office machine I experience the following
trouble:
bossiaea:/opt/R$ R CMD check -c nlme
Checking package `nlme' ...
Massaging examples into `nlme-Ex.R' ...
Running
2005 Nov 17
1
anova.gls from nlme on multiple arguments within a function fails
Dear All --
I am trying to use within a little table producing code an anova
comparison of two gls fitted objects, contained in a list of such
object, obtained using nlme function gls.
The anova procedure fails to locate the second of the objects.
The following code, borrowed from the help page of anova.gls,
exemplifies:
--------------- start example code ---------------
library(nlme)
##
2008 May 09
1
Which gls models to use?
Hi,
I need to correct for ar(1) behavior of my residuals of my model. I noticed
that there are multiple gls models in R. I am wondering if anyone
has experience in choosing between gls models. For example, how
should one decide whether to use lm.gls in MASS, or gls in nlme for
correcting ar(1)? Does anyone have a preference? Any advice is appreciated!
Thanks,
--
Tom
[[alternative HTML
2008 Feb 25
0
logLik calculation in gls (nlme)
I'm getting some odd results computing log-likelihoods
with gls using splines with increasing degrees of freedom --
the deviance *increases* substantially with increasing df.
(Since spline models with increasing df aren't nested, it
need not decline monotonically but I would expect it to
have a decreasing trend!)
I may just be confused, but I *think* the issue is somewhere
within the
2004 Jan 14
2
Generalized least squares using "gnls" function
Hi:
I have data from an assay in the form of two vectors, one is response
and the other is a predictor. When I attempt to fit a 5 parameter
logistic model with "nls", I get converged parameter estimates. I also
get the same answers with "gnls" without specifying the "weights"
argument.
However, when I attempt to use the "gnls" function and try to
2007 Oct 17
2
nmle: gnls freezes on difficult case
Hi,
I am not sure this is a bug but I can repeat it, The functions and data
are below.
I know this is nasty data, and it is very questionable whether a 4pl
model
is appropriate, but it is data fed to an automated tool and I would
have hoped for an error. Does this repeat for anyone else?
My details:
> version
_
platform i686-pc-linux-gnu
2008 Jul 24
0
Problem with GLS dwtest function
Hi,
I want to test for independence in my GLS model fitp2, but when I try to use the
dwtest function in the lmtest library, I get the error message "Error in
terms.default(formula) : no terms component".
The model and data set are below. Any suggestions would be really helpful!
Thanks a lot in advance,
M. Grace
fitp2:
2008 Apr 29
2
function to generate weights for lm?
Hi,
I would like to use a weighted lm model to reduce heteroscendasticity. I am
wondering if the only way to generate the weights in R is through the
laborious process of trial and error by hand. Does anyone know if R has a
function that would automatically generate the weights need for lm?
Thanks,
--
Tom
[[alternative HTML version deleted]]
2009 Aug 19
1
how to specify two variance effects in gls
Hello everybody,
I have a dataset where each row has number of subjects and that gives me natural weights for the variance function. Additionally I see that variance increases with Age, which is a regressor.
So using gls I have
weights=varFixed(~1/n)
but don't know how to include the extra effect of the regressor.
Fitted values show a quadratic curve vs. age, not sure if that helps.
2012 May 02
3
Consulta gráfica
Hola,
Por favor, ¿podríais indicarme qué recursos (librerías o ideas) pueden resultar de utilidad para crear un gráfico del estilo del de la figura 3.8 del siguiente link?
http://www.tsc.uvigo.es/BIO/Bioing/ChrLDoc3.html#3.5
Actualmente estoy utilizando funciones muy básicas y la verdad es que no me encuentro muy satisfecha con el resultado.
Muchas gracias.
Eva
[[alternative HTML
2012 Apr 19
2
Gls function in rms package
Dear R-help,
I don't understand why Gls gives me an error when trying to fit a
model with AR(2) errors, while gls (from nlme) does not. For example:
library(nlme)
library(rms)
set.seed(1)
d <- data.frame(x = rnorm(50), y = rnorm(50))
gls(y ~ x, data=d, correlation = corARMA(p=2)) #This works
Gls(y ~ x, data=d, correlation = corARMA(p=2)) # Gives error
# Error in
2006 Aug 09
1
Joint confidence intervals for GLS models?
Dear All,
I would like to be able to estimate confidence intervals for a linear
combination of coefficients for a GLS model. I am familiar with John
Foxton's helpful paper on Time Series Regression and Generalised Least
Squares (GLS) and have learnt a bit about the gls function.
I have downloaded the gmodels package so I can use the estimable
function. The estimable function is very
2004 Apr 17
1
accessing log likelihood of poison model
Could someone tell me how to access the log likelihood
of a poisson model? I've done the following....
<BEGIN R STUFF>
freq.mod <- glm(formula = nfix ~ gls.gls + pol.gls + pol.rel + rac.gls +
rac.pol + rac.rac + rac.rel + white + gls.gls.w + pol.gls.w + pol.rel.w
+ rac.gls.w + rac.pol.w + rac.rac.w + rac.rac.w + rac.rel.w, family =
poisson, data = Complex2.freq, offset = lnoffset)
2009 Sep 22
1
odd (erroneous?) results from gls
A couple weeks ago I posted a message on this topic to r-help, the response
was that this seemed like odd behavior, and that I ought to post it to one
of the developer lists. I posted to r-sig-mixed-models, but didn't get any
response. So, with good intentions, I decided to try posting once more, but
to this more general list.
The goal is (1) FYI, to make you aware of this issue, in case it
2004 Dec 29
3
gls model and matrix operations
Dear List:
I am estimating a gls model and am having to make some rather unconventional modifications to handle a particular problem I have identified. My aim is to fit a GLS with an AR1 structure, obtain the variance-covariance matrix (V), modify it as needed given my research problem, and then reestimate the GLS by brute force using matrix operations. All seems to be working almost perfectly,
2010 Jan 07
1
faster GLS code
Dear helpers,
I wrote a code which estimates a multi-equation model with generalized
least squares (GLS). I can use GLS because I know the covariance matrix of
the residuals a priori. However, it is a bit slow and I wonder if anybody
would be able to point out a way to make it faster (it is part of a bigger
code and needs to run several times).
Any suggestion would be greatly appreciated.
Carlo
2009 Jul 25
1
how to avoid a for looping break after an error message
Hi all,
I wrote a piece of code that generates simulated variables. after variable
generation I use them in several analyzes.
However, when I use a for to repeat the procedure 1000 times I get an erro
message in one of the "for" steps, precisely at this time:
gls.temp<- gls(y2 ~ x2,correlation=corExp(form=~coord2[,1]+coord2[,2])) #
coord 2 are spatial coordinates
and the error
2003 Oct 24
2
NLME: gls parameter evaluation inconsistency (PR#4757)
Full_Name: W.B.Kloke
Version: 1.8.0
OS: FreeBSD-4.7
Submission from: (NULL) (195.253.22.63)
I found a parameter evaluation inconsistency in NLME package. I tried to use
gls() inside a function, and I wanted use gls() for different subsets of a data
frame:
prgls <- function(name){ gls( log10(Y)~(cond-1)+(cond-1):t
,pr,subset=subject==name)}
Applying this function with a string as parameter
2006 Mar 16
2
DIfference between weights options in lm GLm and gls.
Dear R-List users,
Can anyone explain exactly the difference between Weights options in lm glm
and gls?
I try the following codes, but the results are different.
> lm1
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
0.1183 7.3075
> lm2
Call:
lm(formula = y ~ x, weights = W)
Coefficients:
(Intercept) x
0.04193 7.30660
> lm3
Call: