similar to: Polynomial Regression and NA coefficients in R

Displaying 20 results from an estimated 5000 matches similar to: "Polynomial Regression and NA coefficients in R"

2006 Oct 09
1
Coefficients of a factorized polynomial
Hi all, starting from a vector "v[1:n]" I would like to compute the coefficients of the polynomial (1+x^v[1])*(1+x^v[2])*...*(1+x^v[n]). The following code works but is extremely slow for a large "n" due to, I believe, the polynomial being factorized. I wanted to try the package "polynom" command "unclass" but I could not figure out how to input a
2011 Feb 02
2
unequally spaced factor levels orthogonal polynomial contrasts coefficients trend analysis
Hello [R]-help I am trying to find > a package where you can do ANOVA based trend analysis on grouped data > using orthogonal polynomial contrasts coefficients, for unequally > spaced factor levels. The closest hit I've had is from this web site: >(http://webcache.googleusercontent.com/search?q=cache:xN4K_KGuYGcJ:www.datavis.ca/sasmac/orpoly.html+Orthogonal+polynomial >l but I
2005 Jun 14
2
ordinary polynomial coefficients from orthogonal polynomials?
How can ordinary polynomial coefficients be calculated from an orthogonal polynomial fit? I'm trying to do something like find a,b,c,d from lm(billions ~ a+b*decade+c*decade^2+d*decade^3) but that gives: "Error in eval(expr, envir, enclos) : Object "a" not found" > decade <- c(1950, 1960, 1970, 1980, 1990) > billions <- c(3.5, 5, 7.5, 13, 40) > #
2009 Dec 08
1
coefficients of each local polynomial from locfit
Hi list, This was asked a couple of years ago but I can't find a resolution. Is there any way to get the coefficients from one of the local polynomial fits in locfit. I realize that locfit only constructs polynomials at a handful of intelligently selected points and uses interpolation to predict any other points. I would like to know the terms of the polynomials at these points. It seems
2008 Oct 10
1
Coefficients in a polynomial glm with family poisson/binomial
Dear R-users When running a glm polynomial model with one explanatory variable (example Y~X+X^2), with a poisson or binomial error distribution, the predicted values obtained from using the predict() function and those obtained from using the coefficients from the summary table "as is" in an equation of the form Y=INTERCEPT+ XCoef x X + XCoef x X^2, differ considerably. The former are
2003 Nov 03
1
svm in e1071 package: polynomial vs linear kernel
I am trying to understand what is the difference between linear and polynomial kernel: linear: u'*v polynomial: (gamma*u'*v + coef0)^degree It would seem that polynomial kernel with gamma = 1; coef0 = 0 and degree = 1 should be identical to linear kernel, however it gives me significantly different results for very simple data set, with linear kernel
2007 Aug 15
1
Polynomial fitting
Hi everybody! I'm looking some way to do in R a polynomial fit, say like polyfit function of Octave/MATLAB. For who don't know, c = polyfit(x,y,m) finds the coefficients of a polynomial p(x) of degree m that fits the data, p(x[i]) to y[i], in a least squares sense. The result c is a vector of length m+1 containing the polynomial coefficients in descending powers: p(x) = c[1]*x^n +
2004 Dec 03
3
Computing the minimal polynomial or, at least, its degree
Hi, I would like to know whether there exist algorithms to compute the coefficients or, at least, the degree of the minimal polynomial of a square matrix A (over the field of complex numbers)? I don't know whether this would require symbolic computation. If not, has any of the algorithms been implemented in R? Thanks very much, Ravi. P.S. Just for the sake of completeness, a
2010 Oct 05
2
Using as.polynomial() over a matrix
Hello All First - a warning. I'm not very R or programming savvy. I am trying to do something without much luck, and have scoured help-pages, but nothing has come up. Here it is: I have a matrix (m) of approx 40,000 rows and 3 columns, filled with numbers. I would like to convert the contents of this matrix into another matrix (m_p), where the numbers of (m) have been coerced into a
2011 Jul 07
1
Polynomial fitting
Hello, i'm fairly familiar with R and use it every now and then for math related tasks. I have a simple non polynomial function that i would like to approximate with a polynomial. I already looked into poly, but was unable to understand what to do with it. So my problem is this. I can generate virtually any number of datapoints and would like to find the coeffs a1, a2, ... up to a given
2003 Apr 29
1
polynomial fitting
I'm trying to find a way to fit a polynomial of degree n in x and y to a set of x, y, and z data that I have and obtain the coefficients for the terms of the fitted polynomial. However, when I try to use the surf.ls function I'm getting odd results. > x <- seq(0, 10, length=50) > y <- x > f <- function (x, y) {x^2 + y} > library(spatial) > test <-
2005 Aug 08
2
coefficient of polynomial expansion
Hi, I would like to get the coefficient of polynomial expansion. For example, (1+ x)^2 = 1 + 2x + x^2, and the coefficients are 1, 2 and 1. (1 + x + x^2)^3 = 1 + 3*x + 6*x^2 + 7*x^3 + 6*x^4 + 3*x^5 + x^6, and the coefficients are 1, 3, 6, 7, 6, 3, and 1. I know that we can use polynom library. Is there any other way to do it without loading a library. Thanks a lot for your help. Peter
2009 Jul 04
1
Plot 2-d Polynomial without solving it
Hi, I want to plot a polynomial in the form like ax^2 + bxy + cy^2 + dx + ey + f =0 without solving it(since I may have 3 or 4 dimensional polynomial and it's really hard to solve). Is there any way to plot this kind of polynomial? Thanks a lot! -- View this message in context: http://www.nabble.com/Plot-2-d-Polynomial-without-solving-it-tp24331313p24331313.html Sent from the R help
2012 Apr 19
1
How to find a root for a polynomial between [-inf, -3]?
Hi all, I have a polynomial (a big one) and I would like to find a root of it between [-inf, -3] (it's known there is one root in this interval)... How to find that root? In using "uniroot" I need to supply the bounds.... In using "polyroot" I need to write it in the strict sens polynomial format... but I cannot... i.e. the polynomial is implicit... Thank you!
2009 Sep 17
1
Problems with the commands FUNCTION and DERIV to build a polynomial
Hi all, I need to automate a process in order to prepare a a big loop in the future but I have a problem with the *command function* First I fit a model with lm > model1<-lm(data2[,2]~data2[,1]+I(data2[,1]^2)+I(data2[,1]^3)+I(data2[,1]^4)) I extract the coefficients to build the polynomial. coef<-as.matrix(model1$coefficients) In the next step I need to define the polynomial to
2009 Sep 28
2
Polynomial Fitting
Hello All, This might seem elementary to everyone, but please bear with me. I've just spent some time fitting poly functions to time series data in R using lm() and predict(). I want to analyze the functions once I've fit them to the various data I'm studying. However, after pulling the first function into Octave (just by plotting the polynomial function using fplot() over
2010 Oct 14
1
Fw: Problem to create a matrix polynomial
Awaiting some suggestion. Was my question not very understandable? Please let me know how can I offer more elaborate clarification. Additionally, I would like to solve the determinant of "p1" for the values of "z" (I am working with some multivariate time series modelling). When I use det() function, it am getting error that, that function is not for objects with class
2004 Aug 09
1
returns the value of a polynomial of degree n evaluated at x.
> Background: > OS: Linux Mandrake 9.1 > release: R 1.9.0 > editor: Xemacs 21.4 > frontend: ESS 5.1.23 > --------------------------------- > > Colleagues > Is there a function in R that is similar to polyval in matlab? (y = polyval(p,x) returns the value of a polynomial of degree n evaluated at x. The input argument p is a vector of length n+1 whose elements are the
2009 Apr 27
1
Plotting polynomial fit
Hi. Is there an analog to abline() that can be used to plot a polynomial fit? For example, I can draw the straight-line fit fit <- lm(y ~ x) via abline(coef=fit$coef) but I'm not sure how to draw the polynomial fit fit <- lm(y ~ poly(x,2)) I do see the function curve(), but not how to prepare an expr for curve() based on the coefficients returned by the polynomial
2008 Jan 07
3
Polynomial fitting
I wonder how one in R can fit a 3rd degree polynomial to some data? Say the data is: y <- c(15.51, 12.44, 31.5, 21.5, 17.89, 27.09, 15.02, 13.43, 18.18, 11.32) x <- seq(3.75, 6, 0.25) And resulting degrees of polynomial are: 5.8007 -91.6339 472.1726 -774.2584 THanks in advance! -- Jonas Malmros Stockholm University Stockholm, Sweden