similar to: factor score from PCA

Displaying 20 results from an estimated 5000 matches similar to: "factor score from PCA"

2010 Nov 30
3
pca analysis: extract rotated scores?
Dear all I'm unable to find an example of extracting the rotated scores of a principal components analysis. I can do this easily for the un-rotated version. data(mtcars) .PC <- princomp(~am+carb+cyl+disp+drat+gear+hp+mpg, cor=TRUE, data=mtcars) unclass(loadings(.PC)) # component loadings summary(.PC) # proportions of variance mtcars$PC1 <- .PC$scores[,1] # extract un-rotated scores of
2010 Jan 18
2
Rotating pca scores
Dear Folks I need to rotate PCA loadings and scores using R. I have run a pca using princomp and I have rotated PCA results with varimax. Using varimax R gives me back just rotated PC loadings without rotated PC scores. Does anybody know how I can obtain/calculate rotated PC scores with R? Your kindly help is appreciated in advance Francesca [[alternative HTML version deleted]]
2011 Mar 03
2
PCA - scores
I am running a PCA, but would like to rotate my data and limit the number of factors that are analyzed. I can do this using the "principal" command from the psych package [principal(my.data, nfactors=3,rotate="varimax")], but the issue is that this does not report scores for the Principal Components the way "princomp" does. My question is: Can you get an
2004 Nov 03
2
Princomp(), prcomp() and loadings()
In comparing the results of princomp and prcomp I find: 1. The reported standard deviations are similar but about 1% from each other, which seems well above round-off error. 2. princomp returns what I understand are variances and cumulative variances accounted for by each principal component which are all equal. "SS loadings" is always 1. 3. Same happens
2011 Jan 26
1
Factor rotation (e.g., oblimin, varimax) and PCA
A bit of a newbee to R and factor rotation I am trying to understand factor rotations and their implementation in R, particularly the GPArotation library. I have tried to reproduce some of the examples that I have found, e.g., I have taken the values from Jacksons example in "Oblimin Rotation", Encyclopedia of Biostatistics
2009 Jan 13
1
PCA loadings differ vastly!
hi, I have two questions: #first (SPSS vs. R): I just compared the output of different PCA routines in R (pca, prcomp, princomp) with results from SPSS. the loadings of the variables differ vastly! in SPSS the variables load constantly higher than in R. I made sure that both progr. use the correlation matrix as basis. I found the same problem with rotated values (varimax rotation and rtex=T
2005 Mar 26
5
PCA - princomp can only be used with more units than variables
Hi all: I am trying to do PCA on the following matrix. N1 N2 A1 A2 B1 B2 gene_a 90 110 190 210 290 310 gene_b 190 210 390 410 590 610 gene_c 90 110 110 90 120 80 gene_d 200 100 400 90 600 200 >dataf<-read.table("matrix") >
2005 Oct 13
2
varimax rotation difference between R and SPSS
Hi, I am puzzeled with a differing result of princomp in R and FACTOR in SPSS. Regarding the amount of explained Variance, the two results are the same. However, the loadings differ substantially, in the unrotated as well as in the rotated form. In both cases correlation matrices are analyzed. The sums of the squared components is one in both programs. Maybe there is an obvious reason, but I
2001 Sep 21
1
Request for Help: Rotation of PCA Solution or Eigenvectors
Dear R Helper, I am writing because I seek to perform a varimax rotation on my Principal Components Analysis (PCA) solution. (I have been performing PCA's using the eigen command in R.) If you can tell me how to perform this rotation when I use the eigen command (or the princomp command) I would be thrilled. Thanks so much! Wendy Treynor Ann Arbor, MI USA
2008 Jan 18
2
plotting other axes for PCA
Hi R-community, I am doing a PCA and I need plots for different combinations of axes (e.g., PC1 vs PC3, and PC2 vs PC3) with the arrows indicating the loadings of each variables. What I need is exactly what I get using biplot (pca.object) but for other axes. I have plotted PC2 and 3 using the scores of the cases, but I don't get the arrows proportional to the loadings of each variables on
2009 Jan 30
3
princomp - varimax - factanal
Hi! I am trying to analyse with R a database that I have previously analysed with SPSS. Steps with SPSS: Factorial analysis Extraction options : I select = Principal component analysis Rotation: varimax Steps with R: I have tried it with varimax function with factanal or with princomp...and the results are different of what I have with SPSS. I think that varimax function is incorporated in
2009 Sep 15
1
Factor Analysis function source code required
Hi All, There were lot of diffrences in the R and SPSS results for Exploratory Factor Analysis.why is it so ?I used standard factor analysis functions like:-- factanal(m, factors=3, rotation="varimax") princomp(m, cor = FALSE, scores = TRUE, subset = rep(TRUE, nrow(as.matrix(m)))) print(summary(princomp(m, cor=TRUE),loadings = TRUE, cutoff = 0.2), digits = 2) prcomp(m, scale = TRUE)
2011 Dec 24
1
extract factor scores post-varimax
Hello all, I've run a principal component regression using the PLS package. I then applied varimax rotation (i.e., using http://stat.ethz.ch/R-manual/R-patched/library/stats/html/varimax.html). I cannot figure out how to extract the factor loadings post-varimax. Is there a command to do this? scores(x) does not do it. Thanks and happy holidays -- View this message in context:
2009 Mar 31
3
Factor Analysis Output from R and SAS
Dear Users, I ran factor analysis using R and SAS. However, I had different outputs from R and SAS. Why they provide different outputs? Especially, the factor loadings are different. I did real dataset(n=264), however, I had an extremely different from R and SAS. Why this things happened? Which software is correct on? Thanks in advance, - TY #R code with example data # A little
2010 Jun 30
3
Factor Loadings in Vegan's PCA
Hi all, I am using the vegan package to run a prcincipal components analysis on forest structural variables (tree density, basal area, average height, regeneration density) in R. However, I could not find out how to extract factor loadings (correlations of each variable with each pca axis), as is straightforwar in princomp. Do anyone know how to do that? Moreover, do anyone knows
2009 Mar 25
2
pca vs. pfa: dimension reduction
Can't make sense of calculated results and hope I'll find help here. I've collected answers from about 600 persons concerning three variables. I hypothesise those three variables to be components (or indicators) of one latent factor. In order to reduce data (vars), I had the following idea: Calculate the factor underlying these three vars. Use the loadings and the original var
2004 Feb 17
1
Comparison of % variance explained by each PC before AND after rotation
Hello again- Thanks to Prof. Ripley for responding to my previous question. I would like to clarify my question using sample code. I will use some sample code taken from ?prcomp Again, I would like to compare the % variance explained by each PC before and after rotation. < code follows > data(USArrests) pca = prcomp(USArrests, scale = TRUE) # proportion variance explained by each
2004 Mar 01
1
pca scores for newdata
Hi I used princomp on a dataset x[!sub,]. How can I get the scores for another dataset, say x[sub,]? I didn't succeed using predict() thanks for a hint cheers christoph -- Christoph Lehmann <christoph.lehmann at gmx.ch>
2000 Apr 26
1
Factor Rotation
How does one rotate the loadings from a principal component analysis? Help on function prcomp() from package mva mentions rotation: Arguments retx a logical value indicating whether the rotated variables should be returned. Values rotation the matrix of variable loadings (i.e., a matrix whose olumns contain the eigenvectors). The function princomp returns this in the element
2011 Jun 30
2
sdev value returned by princomp function (used for PCA)
Dear all, I have a question about the 'sdev' value returned by the princomp function (which does principal components analysis). On the help page for princomp it says 'sdev' is 'the standard deviations of the principal components'. However, when I calculate the principal components for the USArrests data set, I don't find this to be the case: Here is how I