Displaying 20 results from an estimated 6000 matches similar to: "Dimension Reduction Using MCA"
How to use PC1 of PCA and dim1 of MCA as a predictor in logistic regression model for data reduction
2011 Aug 17
4
How to use PC1 of PCA and dim1 of MCA as a predictor in logistic regression model for data reduction
Hi all,
I'm trying to do model reduction for logistic regression. I have 13
predictor (4 continuous variables and 9 binary variables). Using subject
matter knowledge, I selected 4 important variables. Regarding the rest 9
variables, I tried to perform data reduction by principal component
analysis (PCA). However, 8 of 9 variables were binary and only one
continuous. I transformed the data by
2013 Jun 01
1
error about MCA
Hi,all:
I want to perform multiple correspondance analysis via MCA{FactoMineR}.
The data is in the attachment.
My code:
dat<-read.delim("e:\\mydata.txt",header=T)
MCA(dat,quanti.sup=7,quali.sup=1:6)
Error in `[.data.frame`(tab, , i) : undefined columns selected
My question:
Why does the error happen?
Many thanks.
Best.
-------------- next part --------------
An embedded and
2013 Feb 04
0
Calculating Weights for Variable Groups
Hello and Thanks in advance for your suggestions.
As a new member, I do not know exactly if such problem has ever been discussed in this forum.
I need a small help using FactoMineR
and RcmdrPlugin.FactoMineR package to calculate weights for the
individual observational units. My data looks like: You can treat the data spaced instead of tabbed.
2010 Feb 24
1
how to label individuals with FactoMiner ?
Dear all,
i'm trying to label specific individuals (supplementary ones) after a PCA with the FactoMiner package. There is not much details (possibilities?) in the R-help of the plot.pca function. There is indeed a "label" parameter but i could only manage to label the supplementary individuals with there "row.names" (i.e. label="indiv.sup") and not with the
2013 Dec 17
1
Polychoric Principal Component Analysis (pPCA)
I have data set with binary responses. I would like to
conduct polychoric principal component analysis (pPCA). I know there are several packages used in PCA but I could not find one that directly estimate pPCA and graph the individuals and variables maps. I will appreciate any help that expand these reproducible scripts.
#How to conduct polychoric principal component analysis pPCA using
#either
2013 Nov 03
2
CONSULTA f
ESTE SCRIPT FUNCIONA PERFECTAMENTE, LA PREGUNTA QUE HACÍA SE REFERÍA A QUE
SI SERÍA POSIBLE QUE EN LA PROPIA TABLA CSV PUDIERAN ESTAR LOS NOMBRES DE
LOS ANTIBIOTICOS Y QUE EL ANÁLISIS PCA NO LO RECHACE POR SER CUALITATIVO,
QUE DE ALGUNA MANERA SE DIERA UNA INSTRUCCIÓN PARA EVITAR TENER QE HACER LO
DE rownames manualmente
setwd("D:/Public/Documents/R/FactoMineR/")
table1 <-
2013 Dec 05
0
AYUDA CON ERROR CON LA LIBRERIA PCA
Estimados
Al leer este interesante script lo corrí, pero al hacer la elipse me
devuelve esa información, no encuentro el porque
saludos
library(FactoMineR)
eu60<- read.csv(file.choose(), header=T, sep=";", dec=".", row.names=1)
eu60.pca <- PCA(eu60, quali.sup=19)
eu60.data <- cbind.data.frame(eu60[,19], eu60.pca$ind$coord)
eu60.ellipse <-
2011 Aug 26
1
Save figure in pdf
Hi,
I created a figure with R and I want to save it in .pdf. I used this code:
> pdf("res.pca.pdf",width=10,height=8)
> library(FactoMineR)
> res.pca<-PCA(acp)
> res.pca
> dev.off()
When I go in my folder, I find an empty file ( 0 Ko).
Do you know where is the problem.
Thank you in advance
--
View this message in context:
2013 Oct 02
0
Análisis de componentes principales con ade4 y FactoMineR
Efectivamente. Puedes cambiar el signo de todos los valores de la
segunda componente, por ejemplo al hacer un gráfico de dispersión.
No creo que se pueda hacer directamente en la función.
Saludos
Francesc
El 01/10/13 17:53, Argel Gastélum Arellánez ha escrit:
> Hola Francesc, muchas gracias por tu respuesta.
>
> Entonces, si quisiera que las gráficas de los resultados de
2013 Nov 01
1
FactoMineR
Este listado de antibióticos lo tengo en una tabla csv CON DETERMINADAS
MEDICIONES CUANTITATIVAS POR AñOS
Ampicillin
Oxacillin
Peniclina
Ciprofloxacina
Amikacina
Gentamicina
Kanamicina
Ceftriaxone
Ceftazidima
Cefotaxima
Cefazolina
Cefuroxima
Aztreonam
Cloranfenicol
Vancomicina
Eritromicina
Clindamicina
Fosfomicina
Amoxicilina
Imipenem
Azitromicina
2009 Mar 25
2
pca vs. pfa: dimension reduction
Can't make sense of calculated results and hope I'll find help here.
I've collected answers from about 600 persons concerning three
variables. I hypothesise those three variables to be components (or
indicators) of one latent factor. In order to reduce data (vars), I
had the following idea: Calculate the factor underlying these three
vars. Use the loadings and the original var
2005 Oct 05
1
pca in dimension reduction
Hi, there:
I am wondering if anyone here can provide an example using pca doing
dimension reduction for a dataset.
The dataset can be n*q (n>=q or n<=q).
As to dimension reduction, are there other implementations for like ICA,
Isomap, Locally Linear Embedding...
Thanks,
weiwei
--
Weiwei Shi, Ph.D
"Did you always know?"
"No, I did not. But I believed..."
---Matrix III
2013 Oct 01
0
Análisis de componentes principales con ade4 y FactoMineR
Por definición la primera componente principal es una combinación lineal
que maximiza la varianza de modo que si la componente 1 es el vector de
coeficientes a, entonces, el vector -a también puede ser dicha
componente. Las otras componentes, por ejemplo la segunda, es
incorrelacionada con la primera y también maximiza la varianza, luego el
signo no importa.
Así pues, el signo de cada
2004 Nov 24
2
LDA with previous PCA for dimensionality reduction
Dear all, not really a R question but:
If I want to check for the classification accuracy of a LDA with
previous PCA for dimensionality reduction by means of the LOOCV method:
Is it ok to do the PCA on the WHOLE dataset ONCE and then run the LDA
with the CV option set to TRUE (runs LOOCV)
-- OR--
do I need
- to compute for each 'test-bag' (the n-1 observations) a PCA
2008 Apr 25
1
Summarize data for MCA (FactoMineR)
Hi :-)
I'm new to R and I started using it for a project (I'm the CS guy in a group
of statisticians helping them find out how to solve issues as they come out).
This is my first post to the list and I am starting to learn R.
Well, they were used to doing MCA analysis in other programs where the data
seems to be preprocessed automatically before running MCA.
So, they need to process a
2006 May 17
0
PCA with FactoMiner
Hello!
I want to do Principal Component Analysis With FactoMiner package in . My data has 923 observation and 12 quantitatives variables. In data frame is there no missing values but are there Zeros as observed values for some units of analysis.
When i execute the function
>PCA(testeff)
is there one error:
#error in V* poids: non-numeric argument to binary operator.
Can anybody help?
2013 Oct 01
3
Análisis de componentes principales con ade4 y FactoMineR
Instalo ade4 correctamente y no me abren los datos como por ejemplo
data(bsetal97)
¿Qué piensan de eso?
De: r-help-es-bounces en r-project.org [mailto:r-help-es-bounces en r-project.org]
En nombre de Francesc Carmona
Enviado el: Tuesday, October 01, 2013 7:30 AM
Para: r-help-es en r-project.org
Asunto: Re: [R-es] Análisis de componentes principales con ade4 y FactoMineR
Por definición
2013 Dec 04
0
AYUDA CON ERROR CON LA LIBRERIA PCA
Hola,
He mirado por encima el conjunto y el posible error.
Como alternativa, mira la solución que se propone aquí:
http://stats.stackexchange.com/questions/24450/how-to-highlight-predefined-groups-in-pca-individual-map
Y como sugerencias:
- Limpiaría un poco el conjunto para quitar las filas que tienen todas
sus columnas con NA. ¿Qué sentido tiene dejarlas?
- Y haría el ejercicio de
2008 Sep 16
1
Different PCA results under Windows and Linux
I ran the following R script under both Linux and Windows, and got 2
different results.
Linux R version 2.7.1 and Windows R version 2.7.2.
> library(FactoMineR)
>x1=read.table("freqtest.txt",header=TRUE)
>xrcc2=x1[,1:8]
>p1=PCA(xrcc2, graph=FALSE)
>p1$var
freqtest.txt file lines of text :
M1 M2 M3 M4 M5 M6 M7 M8
-1 -1 -1 -1 -1 -1 -1 -1
0 0 0 0 -1 -1 1 1
-1 -1 -1 -1 -1 -1
2009 Aug 03
1
principal component analysis for class variables
Dear Forum,
I have a class variable 1 (populations A-E), and two other class variables,
variable 2 and variable 3. What I want is to see if the combination of var 2
and var 3, will give me a pattern that allows to distinguish populations.
I found several packages like ade4, with pcaiv function and factoMineR. but
there are not working. Using the ade4 package, when I try to build the pca:
pca1