Displaying 20 results from an estimated 100 matches similar to: "PCA legend outside of PCA plot"
2012 Sep 11
4
Maintaining specific order when using aggregate or change order on axis
Hi All,
I'm using the following code to produce some stacked bar graphs.
*setwd("C:\\Users\\Tinus\\Documents\\NMMU\\R\\Seamounts")*
*SChla <- read.csv("SM_Chla_data.csv")*
*
*
*#Extract mean values from data file*
*
*
*Coral <- SChla[185:223,] #Reduce SChla to Coral only*
*coral <- with(Coral , aggregate(cbind(Pico, Nano, Micro),
list(Depth),FUN=mean))*
2012 Sep 07
7
Producing a table with mean values
Hi All,
I have a data set wit three size classes (pico, nano and micro) and 12
different sites (Seamounts). I want to produce a table with the mean and
standard deviation values for each site.
Seamount Pico Nano Micro Total_Ch
1 Off_Mount 1 0.0691 0.24200 0.00100 0.31210
2 Off_Mount 1 0.0938 0.00521 0.02060 0.11961
3 Off_Mount 1 0.1130 0.20000 0.06620 0.37920
4 Off_Mount 1
2012 Sep 19
2
Help reproducing a contour plot
Hi All,
I am trying to reproduce this using R instead.
[image: Full-size image (38 K)]
I tried using the following code
*SChla <- read.csv("SM_Chla_data.csv")*
*Atlantis <- SChla[16:66,]*
*head(Atlantis)*
*
*
Seamount Station Depth Pico Nano Micro Total_Ch dbar Latitude
Longitud
16 Atlantis 1217 Surface 0.0639 0.1560 0.0398 0.2597 2.082 -32.71450
57.29733
2005 Mar 24
1
RE: [R] Mapping actual to expected columns for princomp object
[Re-directing to R-devel, as I think this needs changes to the code.]
Can I suggest a modification to stats:predict.princomp so that it will check
for column (variable) names?
In src/library/stats/R/princomp-add.R, insert the following after line 4:
if (!is.null(cn <- names(object$center))) newdata <- newdata[, cn]
Now Dana's example looks like:
> predict(pca1, frz)
Error in
2012 Nov 14
2
error data frame
Hallo everybody!
I am trying to perform a TiTAN (Baker & King 2010) analysis with R 2.14.1. I
have come that far:
h89Abund <- read.csv("Fish89Abund.csv")
> names (Fish89Abund)
[1] "StationCode" "Abramisbrama"
"Alburnoidesbipunctatus" "Alburnusalburnus"
[5] "Ameiurusmelas"
>
2013 Jul 10
3
PCA and gglot2
Hi,
I was trying as well as looking for an answer without success (a bit strange
since it should be an easy problem) and therefore I will appreciate you
help:
My simple script is:
# Loadings data of 5 columns and 100 rows of data
data1<-read.csv("C:/?/MyPCA.csv")
pairs(data1[,1:4])
pca1 <- princomp(data1[,1:4], score=TRUE, cor=TRUE)
biplot(pca1)
The biplot present the data
2009 Aug 03
1
principal component analysis for class variables
Dear Forum,
I have a class variable 1 (populations A-E), and two other class variables,
variable 2 and variable 3. What I want is to see if the combination of var 2
and var 3, will give me a pattern that allows to distinguish populations.
I found several packages like ade4, with pcaiv function and factoMineR. but
there are not working. Using the ade4 package, when I try to build the pca:
pca1
2011 Apr 21
1
Rearranging PCA results from R
Hi!!
I'm having trouble selecting 10 out of 41 attributes of the KDD data set. In
order to identify the components with the higher variance I'm using
princomp. the result i get for summary(pca1) is:
Comp.1 Comp.2 Comp.3
Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
Comp.9
2007 Jun 20
1
nlme correlated random effects
I am examining the following nlme model.
asymporig<-function(x,th1,th2)th1*(1-exp(-exp(th2)*x))
mod1<-nlme(fa20~(ah*habdiv+ad*log(d)+ads*ds+ads2*ds2+at*trout)+asymporig(da.p,th1,th2),
fixed=ah+ad+ads+ads2+at+th1+th2~1,
random=th1+th2~1,
start=c(ah=.9124,ad=.9252,ads=.5,ads2=-.1,at=-1,th1=2.842,th2=-6.917),
data=pca1.grouped)
However, the two random effects (th1 and th2)
2004 Nov 04
2
biplot drawing conc ellipses
Is there an option to draw concentration ellipses in biplots ? It seems
really nice to summarize large number of points of each group.
Cheers../ Murli
2005 Mar 24
0
Mapping actual to expected columns for princomp object
I am working with data sets in which the number and order of columns
may vary, but each column is uniquely identified by its name. E.g.,
one data set might have columns
MW logP Num_Rings Num_H_Donors
while another has columns
Num_Rings Num_Atoms Num_H_Donors logP MW
I would like to be able to perform a principal component analysis (PCA)
on one data set and save the PCA object to
2013 Oct 01
5
Análisis de componentes principales con ade4 y FactoMineR
Hola compañeros de la lista, qué tal.
Estoy haciendo un análisis de componentes principales utilizando
las funciones "dudi.pca" (paquete "ade4") y "PCA" (paquete
"FactoMineR"). Sucede que al comparar las coordenadas de cada individuo
que obtiene cada función, las que corresponden al segundo componente
principal tienen idéntica magnitud pero con
2007 Jul 18
0
multicollinearity in nlme models
I am working on a nlme model that has multiple fixed effects (linear and nonlinear) with a nonlinear (asymptotic) random effect.
asymporig<-function(x,th1,th2)th1*(1-exp(-exp(th2)*x))
asymporigb<-function(x,th1b,th2b)th1b*(1-exp(-exp(th2b)*x))
mod.vol.nlme<-nlme(fa20~(ah*habdiv+ads*ds+ads2*ds2+at*trout)+asymporig(da.p,th1,th2)+
asymporigb(vol,th1b,th2b),
2011 Nov 11
6
need help
hello all R experts,
how do I calculate the reliability between the two groups
using the ICCs?
I'll appreciate your reply,
Thanks
Sincerely,
Supreet kaur,
Biomedical research engineer,
Nationwide Childrens Hospital,
Columbus, OH
(614)355-3509
[[alternative HTML version deleted]]
2013 Oct 01
3
Análisis de componentes principales con ade4 y FactoMineR
Instalo ade4 correctamente y no me abren los datos como por ejemplo
data(bsetal97)
¿Qué piensan de eso?
De: r-help-es-bounces en r-project.org [mailto:r-help-es-bounces en r-project.org]
En nombre de Francesc Carmona
Enviado el: Tuesday, October 01, 2013 7:30 AM
Para: r-help-es en r-project.org
Asunto: Re: [R-es] Análisis de componentes principales con ade4 y FactoMineR
Por definición
2013 Oct 01
0
Análisis de componentes principales con ade4 y FactoMineR
Por definición la primera componente principal es una combinación lineal
que maximiza la varianza de modo que si la componente 1 es el vector de
coeficientes a, entonces, el vector -a también puede ser dicha
componente. Las otras componentes, por ejemplo la segunda, es
incorrelacionada con la primera y también maximiza la varianza, luego el
signo no importa.
Así pues, el signo de cada
2013 Oct 02
0
Análisis de componentes principales con ade4 y FactoMineR
Efectivamente. Puedes cambiar el signo de todos los valores de la
segunda componente, por ejemplo al hacer un gráfico de dispersión.
No creo que se pueda hacer directamente en la función.
Saludos
Francesc
El 01/10/13 17:53, Argel Gastélum Arellánez ha escrit:
> Hola Francesc, muchas gracias por tu respuesta.
>
> Entonces, si quisiera que las gráficas de los resultados de
2011 Nov 13
2
kernel messages: alignment check: 0000 [#1] SMP
Hi,
This is just to report about the "alignment check: 0000 [#1] SMP"
kernel messages in one of my build system (domU) running Scientific
Linux 6.1.
I am compiling/rpm package for sbcl (http://sbcl.sourceforge.net/) in
my build system (domU) and hit the following kernel messages although
the domU in question still running and compilation still in progress.
I have done some searching
2006 Sep 15
2
prediction interval for new value
Hi,
1. How do I construct 95% prediction interval for new x values, for example - x = 30000?
2. How do I construct 95% confidence interval?
my dataframe is as follows :
>dt
structure(list(y = c(26100000,
60500000, 16200000, 30700000, 70100000, 57700000, 46700000, 8600000,
10000000, 61800000, 30200000, 52200000, 71900000, 55000000, 12700000
), x = c(108000, 136000,
2012 Jul 11
1
Package MuMIn (dredge): Error in ret[, ] <- cbind(x, se, rep(if (is.null(df)) NA_real_ else df, : number of items to replace is not a multiple of replacement length.
Hello R community,
I am attempting to run multiple logistic regressions (multinomial, via
package 'nnet'), with Automated Model Selection (dredge, package 'MuMIn').
The aim is to reduce the number of predictor variables by assessing relative
performance of each variable, which can be done in a coarse fashion using
the Automated Model Selection option in package 'MuMIn'