Displaying 20 results from an estimated 5000 matches similar to: "Accessing the (first or more) principal component with princomp or prcomp"
2006 Mar 25
1
Suggest patch for princomp.formula and prcomp.formula
Dear all,
perhaps I am using princomp.formula and prcomp.formula in a way that
is not documented to work, but then the documentation just says:
formula: a formula with no response variable.
Thus, to avoid a lot of typing, it would be nice if one could use '.'
and '-' in the formula, e.g.
> library(DAAG)
> res <- prcomp(~ . - case - site - Pop - sex, possum)
2009 Nov 25
1
which to trust...princomp() or prcomp() or neither?
According to R help:
princomp() uses eigenvalues of covariance data.
prcomp() uses the SVD method.
yet when I run the (eg., USArrests) data example and compare with my own
"hand-written" versions of PCA I get what looks like the opposite.
Example:
comparing the variances I see:
Using prcomp(USArrests)
-------------------------------------
Standard deviations:
[1] 83.732400 14.212402
2009 Oct 19
2
What is the difference between prcomp and princomp?
Some webpage has described prcomp and princomp, but I am still not
quite sure what the major difference between them is. Can they be used
interchangeably?
In help, it says
'princomp' only handles so-called R-mode PCA, that is feature
extraction of variables. If a data matrix is supplied (possibly
via a formula) it is required that there are at least as many
units as
2004 Nov 03
2
Princomp(), prcomp() and loadings()
In comparing the results of princomp and prcomp I find:
1. The reported standard deviations are similar but about 1% from
each other, which seems well above round-off error.
2. princomp returns what I understand are variances and cumulative
variances accounted for by each principal component which are
all equal. "SS loadings" is always 1.
3. Same happens
2006 Jun 26
1
princomp and prcomp confusion
When I look through archives at
https://stat.ethz.ch/pipermail/r-help/2003-October/040525.html
I see this:
Liaw, Andy wrote:
>In the `Detail' section of ?princomp:
>
>princomp only handles so-called Q-mode PCA, that is feature extraction of
>variables. If a data matrix is supplied (possibly via a formula) it is
>required that there are at least as many units as variables. For
2008 Feb 10
1
prcomp vs. princomp vs fast.prcomp
Hi R People:
When performing PCA, should I use prcomp, princomp or fast.prcomp, please?
thanks.
Erin
--
Erin Hodgess
Associate Professor
Department of Computer and Mathematical Sciences
University of Houston - Downtown
mailto: erinm.hodgess at gmail.com
2008 Nov 03
1
Input correlation matrix directly to princomp, prcomp
Hello fellow Rers,
I have a no-doubt simple question which is turning into a headache so
would be grateful for any help.
I want to do a principal components analysis directly on a correlation
matrix object rather than inputting the raw data (and specifying cor =
TRUE or the like). The reason behind this is I need to use polychoric
correlation coefficients calculated with John Fox's
2010 Jun 15
1
Getting the eigenvectors for the dependent variables from principal components analysis
Dear listserv,
I am trying to perform a principal components analysis and create an output table of the eigenvalues for the dependent variables. What I want is to see which variables are driving each principal components axis, so I can make statements like, "PC1 mostly refers to seed size" or something like that.
For instance, if I try the example from ?prcomp
> prcomp(USArrests,
2009 Mar 08
2
prcomp(X,center=F) ??
I do not understand, from a PCA point of view, the option center=F
of prcomp()
According to the help page, the calculation in prcomp() "is done by a
singular value decomposition of the (centered and possibly scaled) data
matrix, not by using eigen on the covariance matrix" (as it's done by
princomp()) .
"This is generally the preferred method for numerical accuracy"
2011 Jan 28
3
how to get coefficient and scores of Principal component analysis in R?
Dear All,
It might be a simple question. But I could not find the answer from function “prcomp” or “princomp”. Does anyone know what are the codes to get coefficient and scores of Principal component analysis in R?
Your reply will be appreciated!
Best
Zunqiu
[[alternative HTML version deleted]]
2000 Dec 01
1
simple (NEWBIE) question re: prcomp or princomp
Hi,
I am a new user of R, and apologize beforehand for the simplistic nature of this question:
I ran prcomp on a data set with 4 variables, and am able to see the summary information (variance contribution, rotation matrix, plots, etc.). However, I'd also like to extract the actual values of the principal components (PC) corresponding to each sample. I've looked in the help, on-line
2003 Oct 16
1
princomp with more coloumns than rows: why not?
As of R 1.7.0, princomp no longer accept matrices with more coloumns
than rows. I'm curious: Why was this decision made?
I work a lot with data where more coloumns than rows is more of a rule
than an exception (for instance spectroscopic data). To me, princomp
have two advantages above prcomp: 1) It has a predict method, and 2)
it has a biplot method.
A biplot method shouldn't be too
2012 Jul 25
2
Obtain residuals from a Principal Component Analysis
Hi everyone,
I am relatively new to R, and I need to perform the principal components
analysis of a data matrix. I know that there are a bunch of methods to do it
(dudi.pca, princomp, prcomp...) but I have not managed to find a method that
can return the residuals obtained by retaining X principal components of the
original data, as this MATLAB function can do: http://is.gd/6WeUFF
Suggestions?
2012 Feb 29
2
Principal Component Analysis
Dear R buddies,
I’m trying to run Principal Component Analysis, package
princomp: http://stat.ethz.ch/R-manual/R-patched/library/stats/html/princomp.html.
My question is: why do I get different results with pca =
princomp (x, cor = TRUE) and pca = princomp (x, cor = FALSE) even when I
standardize variables in my matrix?
Best regards,
Blaž Simčič
[[alternative HTML version deleted]]
2011 Nov 04
1
How to use 'prcomp' with CLUSPLOT?
Hello,
I have a large data set that has more columns than rows (sample data below). I am trying to perform a partitioning cluster analysis and then plot that using pca. I have tried using CLUSPLOT(), but that only allows for 'princomp' where I need 'prcomp' as I do not want to reduce my columns. Is there a way to edit the CLUSPLOT() code to use 'prcomp', please?
#
2006 Nov 16
1
Problems with principal components analysis PCA with prcomp
Dear friends,
I am beginning to use R software in my academic research and I'm having some
problems regarding the use of PCA.
I have a table with 24445 rows and 9 columns, and I used the function
prcomp() to do the analysis.
Working with an example?:
x<-read.table("test.txt", header=T)
row.names(x)<-x[,1]
x<-x[,-1]
require(stats)
pca<-prcomp(x, scale=T)
names(pca)
##
2012 May 23
1
prcomp with previously scaled data: predict with 'newdata' wrong
Hello folks,
it may be regarded as a user error to scale() your data prior to prcomp() instead of using its 'scale.' argument. However, it is a user thing that may happen and sounds a legitimate thing to do, but in that case predict() with 'newdata' can give wrong results:
x <- scale(USArrests)
sol <- prcomp(x)
all.equal(predict(sol), predict(sol, newdata=x))
## [1]
2005 Mar 24
1
RE: [R] Mapping actual to expected columns for princomp object
[Re-directing to R-devel, as I think this needs changes to the code.]
Can I suggest a modification to stats:predict.princomp so that it will check
for column (variable) names?
In src/library/stats/R/princomp-add.R, insert the following after line 4:
if (!is.null(cn <- names(object$center))) newdata <- newdata[, cn]
Now Dana's example looks like:
> predict(pca1, frz)
Error in
2005 Aug 03
3
prcomp eigenvalues
Hello,
Can you get eigenvalues in addition to eigevectors using prcomp? If so how?
I am unable to use princomp due to small sample sizes.
Thank you in advance for your help!
Rebecca Young
--
Rebecca Young
Graduate Student
Ecology & Evolutionary Biology, Badyaev Lab
University of Arizona
1041 E Lowell
Tucson, AZ 85721-0088
Office: 425BSW
rlyoung at email.arizona.edu
(520) 621-4005
2011 Sep 06
2
Q and R mode in Principal Component Analysis
Hi,
Can anyone explain me the differences in Q and R mode in Principal Component
Analysis, as performed by prcomp and princom respectively.
Regards
L?vio Cipriano