Displaying 20 results from an estimated 8000 matches similar to: "Random forests prediction"
2010 Oct 22
2
Random Forest AUC
Guys,
I used Random Forest with a couple of data sets I had to predict for binary
response. In all the cases, the AUC of the training set is coming to be 1.
Is this always the case with random forests? Can someone please clarify
this?
I have given a simple example, first using logistic regression and then
using random forests to explain the problem. AUC of the random forest is
coming out to be
2009 Sep 13
2
Regarding Performance and Prediction routines of rattle library and XML package
Hi
Can anybody tell me in which library Performance and Prediction routines exist to find AUC and I am unable to find a dependency of rattle library, XML, for Windows can any body tell me about that.
Thanks
[[alternative HTML version deleted]]
2010 Dec 21
3
Link prediction in social network with R
Dear R users
I'm a novice user of R and have absolutely no prior knowledge of social network analysis, so apologies if my question is trivial. I've spent alot of time trying to solve this on my own but I really can't so hope someone here can help me out. Cheers!
The dataset:
I'm trying to predict the existance of links (True or False) in a test set using a training set. Both
2012 Oct 20
1
Logistic regression/Cut point? predict ??
I am new to R and I am trying to do a monte carlo simulation where I
generate data and interject error then test various cut points; however, my
output was garbage (at x equal zero, I did not get .50)
I am basically testing the performance of classifiers.
Here is the code:
n <- 1000; # Sample size
fitglm <- function(sigma,tau){
x <- rnorm(n,0,sigma)
intercept <- 0
beta
2006 Nov 24
1
How to find AUC in SVM (kernlab package)
Dear all,
I was wondering if someone can help me. I am learning SVM for
classification in my research with kernlab package. I want to know about
classification performance using Area Under Curve (AUC). I know ROCR
package can do this job but I found all example in ROCR package have
include prediction, for example, ROCR.hiv {ROCR}. My problem is how to
produce prediction in SVM and to find
2008 Jan 05
1
AUC values from LRM and ROCR
Dear List,
I am trying to assess the prediction accuracy of an ordinal model fit with
LRM in the Design package. I used predict.lrm to predict on an independent
dataset and am now attempting to assess the accuracy of these predictions.
>From what I have read, the AUC is good for this because it is threshold
independent. I obtained the AUC for the fit model output from the c score (c
=
2010 Jan 22
2
Computing Confidence Intervals for AUC in ROCR Package
Dear R-philes,
I am plotting ROC curves for several cross-validation runs of a
classifier (using the function below). In addition to the average
AUC, I am interested in obtaining a confidence interval for the
average AUC. Is there a straightforward way to do this via the ROCR
package?
plot_roc_curve <- function(roc.dat, plt.title) {
#print(str(vowel.ROC))
pred <-
2012 Oct 25
2
How to extract auc, specificity and sensitivity
I am running my code in a loop and it does not work but when I run it
outside the loop I get the values I want.
n <- 1000; # Sample size
fitglm <- function(sigma,tau){
x <- rnorm(n,0,sigma)
intercept <- 0
beta <- 0
ystar <- intercept+beta*x
z <- rbinom(n,1,plogis(ystar))
xerr <- x + rnorm(n,0,tau)
model<-glm(z ~ xerr, family=binomial(logit))
2012 Dec 19
2
pROC and ROCR give different values for AUC
Packages pROC and ROCR both calculate/approximate the Area Under (Receiver Operator) Curve. However the results are different.
I am computing a new variable as a predictor for a label. The new variable is a (non-linear) function of a set of input values, and I'm checking how different parameter settings contribute to prediction. All my settings are predictive, but some are better.
The AUC i
2008 Jul 17
1
Comparing differences in AUC from 2 different models
Hi,
I would like to compare differences in AUC from 2 different models, glm and gam for predicting presence / absence. I know that in theory the model with a higher AUC is better, but what I am interested in is if statistically the increase in AUC from the glm model to the gam model is significant. I also read quite extensive discussions on the list about ROC and AUC but I still didn't find
2012 Feb 09
2
AUC, C-index and p-value of Wilcoxon
Dear all,
I am using the ROCR library to compute the AUC and also the Hmisc library
to compute the C-index of a predictor and a group variable. The results of
AUC and C-index are similar and give a value of about 0.57. The Wilcoxon
p-value is <0.001! Why the AUC is showing small value and the p-value is
high significant? The AUC is based on Wilcoxon calculation?
Many thanks,
Lina
2008 Jun 12
1
About Mcneil Hanley test for a portion of AUC!
Dear all
I am trying to compare the performances of several methods using the AUC0.1
and
not the whole AUC. (meaning I wanted to compare to AUC's whose x axis only
goes to
0.1 not 1)
I came to know about the Mcneil Hanley test from Bernardo Rangel Tura
and I referred to the original paper for the calculation of "r" which is an
argument of the function
cROC. I can only find the
2008 Mar 19
1
ROC analysis
Hello list,
I am trying to perform ROC analysis and count the AUC in order to validate
my results. I use package ROCR. I would like to count the AUC not under the
cutoff found by "performance" but to use another cutoff that I calculate.
How could I change the following command in order to get what I want?
perform=performance(pred,measure="auc",x.measure="cutoff"),
2011 Jan 20
2
auc function
Hi, there.
Suppose I already have sensitivities and specificities. What is the quick R-function to calculate AUC for the ROC plot? There seem to be many R functions to calculate AUC.
Thanks.
Yulei
[[alternative HTML version deleted]]
2011 Apr 13
1
area under roc curve
Dear all,
I want to measure the goodness of prediction of my linear model. That's why
I was thinking about the area under roc curve.
I'm trying the following, but I don't know how to avoid the error. Any help
would be appreciated.
library(ROCR)
model.lm <- lm(log(outcome)~log(v1)+log(v2)+factor1)
pred<-predict(model.lm)
pred<-prediction(as.numeric(pred),
2009 May 12
1
ROCR: auc and logarithm plot
Hi,
I am quite new to R and I have two questions regarding ROCR.
1. I have tried to understand how to extract area-under-curve value by looking at the ROCR document and googling. Still I am not sure if I am doing the right thing. Here is my code, is "auc1" the auc value?
"
pred1 <- prediction(resp1,label1)
perf1 <- performance(pred1,"tpr","fpr")
plot(
2007 Feb 15
1
Problem in summaryBy
The R script below gives values of 1 for all minimum values when I use a
custom function in summaryBy. I get the correct values when I use FUN=min
directly. Any help is much appreciated.
The continuous information provided in this forum is fabulous as are the
different R packages available.
Rene
# Simulated simplified data
Subj <- rep(1:4, each=6)
Analyte <-
2011 Aug 02
2
Help with aggregate syntax for a multi-column function please.
Dear R-experts:
I am using a function called AUC whose arguments are data, time, id, and
dv.
data is the name of the dataframe,
time is the independent variable column name,
id is the subject id and
dv is the dependent variable.
The function computes area under the curve by trapezoidal rule, for each
subject id.
I would like to embed this in aggregate to further subset by each
2017 Jun 26
3
Jagged ROC curves?
Hi,
I was trying to draw some ROC curves (prediction of case/control status),
but seem to be getting a somewhat jagged plot. Can I do something that
would 'smooth' it somewhat? Most roc curves seem to have many incremental
changes (in x and y directions), but my plot only has 4 or 5 steps even
though there are 22 data points. Should I be doing something differently?
How can I provide a
2010 May 19
1
col allocation is not right
plot(svm.auc, col=2, main="ROC curves comparing classification performance\n
of six machine learning models")
legend(0.5, 0.6, c(ns, nb, nr, nt, nl,ne), 2:6, 9) # Draw a legend.
plot(bo.auc, col=3, add=T) # add=TRUE draws on the existing chart
plot(rf.auc, col=4, add=T)
plot(tree.auc, col=5, add=T)
plot(nn.auc, col=6, add=T)
plot(en.auc, col=9,lty="dotted",lwd=3, add=T)
Hi,