similar to: Confused about multiple imputation with rms or Hmisc packages

Displaying 17 results from an estimated 17 matches similar to: "Confused about multiple imputation with rms or Hmisc packages"

2006 Mar 24
0
Imputing NAs using transcan(); impute()
Dear all, I'm trying to impute NAs by conditional medians using transcan() in conjunction with impute.transcan(). ... see and run attached example.. Everything works fine, however impute() returns saying Under WINDOWS > x.imputed <- impute(trans) Fehler in assign(nam, v, where = where.out) : unbenutzte(s) Argument(e) (where ...) Zus?tzlich: Warnmeldung: variable X1 does not
2004 Nov 30
2
impute missing values in correlated variables: transcan?
I would like to impute missing data in a set of correlated variables (columns of a matrix). It looks like transcan() from Hmisc is roughly what I want. It says, "transcan automatically transforms continuous and categorical variables to have maximum correlation with the best linear combination of the other variables." And, "By default, transcan imputes NAs with "best
2003 Jun 16
1
Hmisc multiple imputation functions
Dear all; I am trying to use HMISC imputation function to perform multiple imputations on my data and I keep on getting errors for the code given in the help files. When using "aregImpute" the error is; >f <- aregImpute(~y + x1 + x2 + x3, n.impute=100) Loading required package: acepack Iteration:1 Error in .Fortran("wclosepw", as.double(w), as.double(x),
2007 Sep 26
1
using transcan for imputation, categorical variable
Dear all, I am using transcan to impute missing values (single imputation). I have several dichotomous variables in my dataset, but when I try to impute the missings sometimes values are imputed that were originally not in the dataset. So, a variable with 2 values (severe weight loss or no/limited weight loss) for example coded 0 and 1, shows 3 different values after imputation (0, 1 and 2). I
2005 Jan 11
1
transcan() from Hmisc package for imputing data
Hello: I have been trying to impute missing values of a data frame which has both numerical and categorical values using the function transcan() with little luck. Would you be able to give me a simple example where a data frame is fed to transcan and it spits out a new data frame with the NA values filled up? Or is there any other function that i could use? Thank you avneet ===== I believe in
2004 Aug 14
0
Re: extracting datasets from aregImpute objects
From: <david_foreman at doctors.org.uk> Subject: [R] Re: extracting datasets from aregImpute objects To: <r-help at stat.math.ethz.ch> Message-ID: <1092391719_117440 at drn10msi01> Content-Type: text/plain; charset="us-ascii" I've tried doing this by specifying x=TRUE, which provides me with a single imputation, that has been useful. However, the help file
2004 Aug 13
0
Re: extracting datasets from aregImpute objects
I've tried doing this by specifying x=TRUE, which provides me with a single imputation, that has been useful. However, the help file possibly suggests that I should get a flat-file matrix of n.impute imputations, presumably with indexing. I'm a bit stuck using alternatives to aregImpute, as neither MICE nor Amelia seem to like my dataset, and Frank Harrell no longer recommends Transcan
2009 Mar 06
0
impcat='tree'
Dear All, I am going through a worked example provided by Harrell, Lee and Mark (1996, Stats in Medicine, 15, 361-387). I know that the code provided is for S-PLUS and R but the languages don't differ enough for this to be a problem. I am using the Hmisc and Design libraries and have used the following code (as shown in the example provided in the referenced paper): '%in%' <-
2007 Jun 22
1
Imputing missing values in time series
Folks, This must be a rather common problem with real life time series data but I don't see anything in the archive about how to deal with it. I have a time series of natural gas prices by flow date. Since gas is not traded on weekends and holidays, I have a lot of missing values, FDate Price 11/1/2006 6.28 11/2/2006 6.58 11/3/2006 6.586 11/4/2006 6.716 11/5/2006 NA 11/6/2006 NA 11/7/2006
2005 May 04
3
Imputation
  I have timeseries data for some factors, and some missing values are there in those factors, I want impute those missing values without disturbing the distribution of that factor, and maintaining the correlation with other factors. Pl. suggest me some imputation methods. I tried some functions in R like aregImpute, transcan. After the imputation I am unable to retrive the data with imputed
2005 Jul 09
1
aregImpute: beginner's question
Hello R-help, Thanks for everyone's very helpful suggestions so far. I am now trying to use aregImpute for my missing data imputation. Here are the code and error messages. Any suggestions would be very much appreciated. Sincerely, Anders Corr ######################################## #Question for R-Help on aregImpute ######################################## #DOWNLOAD DATA (61Kb)
2008 Jun 30
3
Is there a good package for multiple imputation of missing values in R?
I'm looking for a package that has a start-of-the-art method of imputation of missing values in a data frame with both continuous and factor columns. I've found transcan() in 'Hmisc', which appears to be possibly suited to my needs, but I haven't been able to figure out how to get a new data frame with the imputed values replaced (I don't have Herrell's book). Any
2003 Apr 24
1
"Missing links": Hmisc and Design docs
Hi folks, Using R Version 1.6.2 (2003-01-10) on SuSE Linux 7.2, I just installed Hmisc_1.5-3.tar.gz and Design_1.1-5.tar.gz These were taken from http://hesweb1.med.virginia.edu/biostat/s/library/r Checked the dependencies: Hmisc: grid, lattice, mva, acepack -- all already installed Design: Hmisc, survival -- survival already installed, so installed Hmisc first All seems to go
2011 Aug 17
4
How to use PC1 of PCA and dim1 of MCA as a predictor in logistic regression model for data reduction
Hi all, I'm trying to do model reduction for logistic regression. I have 13 predictor (4 continuous variables and 9 binary variables). Using subject matter knowledge, I selected 4 important variables. Regarding the rest 9 variables, I tried to perform data reduction by principal component analysis (PCA). However, 8 of 9 variables were binary and only one continuous. I transformed the data by
2009 Mar 09
5
Help
Hello Everyone, I am trying to excess the inbuit .Fortran and .C codes of R. Can any one help me in that. For example in kmeans clustering the algorithms are written in .Fortran I want to access them and see the .Fortran syntax of the codes. Can any one help me how can I do that? Thanx, Nitin Kumar On Thu, Nov 27, 2008 at 12:00 PM, <r-help-request@r-project.org> wrote: > Send R-help
2004 Aug 17
2
Re: Thanks Frank, setting graph parameters, and why social scientists don't use R
First, many thanks to Frank Harrell for once again helping me out. This actually relates to the next point, which is my contribution to the 'why don't social scientists use R' discussion. I am a hybrid social scientist(child psychiatrist) who trained on SPSS. Many of my difficulties in coming to terms with R have been to do with trying to apply the logic underlying SPSS, with dire
2007 Jun 24
2
matlab/gauss code in R
Hi all! I would like to import a matlab or gauss code to R. Could you help me? Bye, Sebasti?n. 2007/6/23, r-help-request en stat.math.ethz.ch <r-help-request en stat.math.ethz.ch>: > Send R-help mailing list submissions to > r-help en stat.math.ethz.ch > > To subscribe or unsubscribe via the World Wide Web, visit >