similar to: odd evaluation within correlation argument of glmmPQL

Displaying 20 results from an estimated 2000 matches similar to: "odd evaluation within correlation argument of glmmPQL"

2008 Oct 10
1
glmmPQL
Dear all, I am experiencing problems with glmmmPQL. I am trying to analyze binomial data with some spatial autocorrelation. Here is my code and some of the outputs > colnames(d.glmm) [1] "BV" "Longitude" "Latitude" "nb_pc_02" "nb_expr_02" [6] "pc_02" "nb_pc_07" "nb_expr_07"
2012 May 29
1
GLMMPQL spatial autocorrelation
Dear all, I am experiencing problems using the glmmPQL function in the MASS package (Venables & Ripley 2002) to model binomial data with spatial autocorrelation. My question - is the presence of birds affected by various hydrological parameters? Presence/absence data were collected from 83 sites and coupled against hydrological data from the same site. The bird survey sampling effort
2006 Jul 01
1
nlme: correlation structure in gls and zero distance
Dear listers, I am trying to model the distribution of fox density over years in the Doubs department. Measurements have been taken on 470 plots in March each year and georeferenced. Average density is supposed to be different each year. In a first approach, I would like to use a general model of this type, taking spatial correlation into account:
2005 Jul 13
3
nlme, MASS and geoRglm for spatial autocorrelation?
Hi. I'm trying to perform what should be a reasonably basic analysis of some spatial presence/absence data but am somewhat overwhelmed by the options available and could do with a helpful pointer. My researches so far indicate that if my data were normal, I would simply use gls() (in nlme) and one of the various corSpatial functions (eg. corSpher() to be analagous to similar analysis in SAS)
2003 Apr 22
1
glmmPQL and additive random effects?
I'm a bit puzzled by how to write out additive random effects in glmmPQL. In my situation, I have a factorial design on two (categorical) random factors, A and B. At each combination, I have a binary response, y, and two binary fixed covariates, C and D. If everything were fixed, I would use glm(y ~ A + B + C + D, family = binomial) My first thought was to use glmmPQL(y ~ A + B, random
2006 Apr 10
1
Weights in glmmPQL
Hello, I am using the R function glmmPQL to fit a logistic GLMM, with weights. I am finding that I get fairly different parameter estimates in glmmPQL from fitting the full dataset (with no "weight" statement) and an equivalent, shorter dataset with the weights statement. I am using the weights statement in the 'glmmPQL' function exactly as in the 'glm' function. I
2013 Jul 11
1
Differences between glmmPQL and lmer and AIC calculation
Dear R Community, I?m relatively new in the field of R and I hope someone of you can help me to solve my nerv-racking problem. For my Master thesis I collected some behavioral data of fish using acoustic telemetry. The aim of the study is to compare two different groups of fish (coded as 0 and 1 which should be the dependent variable) based on their swimming activity, habitat choice, etc.
2005 Aug 20
1
glmmPQL and Convergence
I fit the following model using glmmPQL from MASS: fit.glmmPQL <- glmmPQL(ifelse(class=="Disease",1,0)~age+x1+x2,random=~1|subject,family=binomial) summary(fit.glmmPQL) The response is paired (pairing denoted by subject), although some subjects only have one response. Also, there is a perfect positive correlation between the paired responses. x1 and x2 can and do differ within each
2012 Oct 10
1
glmmPQL and spatial correlation
Hi all, I'm running into some computer issues when trying to run a binomial model for spatially correlated data using glmmPQL and was wondering if anyone could help me out. My whole dataset consists of about 300,000 points for which I have a suite of environmental variables (I'm trying to come up with a habitat model for a species of seal, using real (presence) and simulated dives
2005 Dec 27
2
glmmPQL and variance structure
Dear listers, glmmPQL (package MASS) is given to work by repeated call to lme. In the classical outputs glmmPQL the Variance Structure is given as " fixed weights, Formula: ~invwt". The script shows that the function varFixed() is used, though the place where 'invwt' is defined remains unclear to me. I wonder if there is an easy way to specify another variance
2006 Mar 24
1
predict.glmmPQL Problem
Dear all, for a cross-validation I have to use predict.glmmPQL() , where the formula of the corresponding glmmPQL call is not given explicitly, but constructed using as.formula. However, this does not work as expected: x1<-rnorm(100); x2<-rbinom(100,3,0.5); y<-rpois(100,2) mydata<-data.frame(x1,x2,y) library(MASS) # works as expected model1<-glmmPQL(y~x1, ~1 | factor(x2),
2005 Sep 04
1
specification for glmmPQL
Hello All, I have a question regarding how glmmPQL should be specified. Which of these two is correct? summary(fm.3 <- glmmPQL(cbind(response, 100 - response) ~ expt, data = data.1, random = ~ 1 | subject, family = binomial)) summary(fm.4 <- glmmPQL(response ~ expt, data = data.2, random = ~ 1 | subject, family =
2005 Oct 19
1
anova with models from glmmPQL
Hi ! I try to compare some models obtained from glmmPQL. model1 <- glmmPQL(y~red*yellow+I(red^2)+I(yellow^2)+densite8+I(densite8^2)+freq8_4 +I(freq8_4^2), random=~1|num, binomial); model2 <- glmmPQL(y~red*yellow+I(red^2)+I(yellow^2)+densite8+I(densite8^2)+freq8_4 , random=~1|num, binomial); anova(model1, model2) here is the answer : Erreur dans anova.lme(model1, model2) : Objects must
2004 Mar 06
2
GlmmPQL with binomial errors
Hi all! I hope somebody can help me solve some doubts which must be very basic, but I haven't been able to solve by myself. The first one, is how to assess for overdispersion in GlmmPQL when fitting binomial or poisson errors. The second one is whether GlmmPQL can compare models with different fixed effects. The third doubt, regards the way I should arrange my data in a GlmmPQL with
2008 Sep 02
1
plotting glmmPQL function
hello all, i'm an R newbie struggling a bit with the glmmPQL function (from the nlme pack). i think i've managed to run the model successfully, but can't seem to plot the resulting function. plot(glmmPQL(...)) plots the residuals rather than the model... i know this should be basic, but i can't seem to figure it out. many thanks in advance. j -- View this message in context:
2003 Jan 14
1
glmmPQL and anova
Dear R-users, I have conducted an experiment with a 2*2*2 factorial within-subjects design. All factors are binary and the dependent measure is a frequency of successes between 0 and 4. Treating this as a normally distributed variable, I would perform a repeated-measures ANOVA as follows: > aov(y ~ A*B*C + Error(subj/(A+B+C))) but since the distribution of the dependent measure is clearly
2004 Jun 09
1
GlmmPQL
Dear all, I have two questions concerning model simplification in GlmmPQL, for for random and fixed effects: 1. Fixed effects: I don't know if I can simply specify anova(model) and trust the table that comes up with the p value for each variable in the fixed effects formula. I have read that the only way to test for fixed effects is to do approximate wald tests based on the standard errors
2004 Mar 20
1
contrast lme and glmmPQL and getting additional results...
I have a longitudinal data analysis project. There are 10 observations on each of 15 units, and I'm estimating this with randomly varying intercepts along with an AR1 correction for the error terms within units. There is no correlation across units. Blundering around in R for a long time, I found that for linear/gaussian models, I can use either the MASS method glmmPQL (thanks to
2006 Aug 10
1
glmmPQL question!
Hello Folks- Is there a way to create confidence bands with 'glmmPQL' ??? I am performing a stroke study for Northwestern University in Chicago, Illinois. I am trying to decide a way to best plot the model which we created with the glmmPQL function in R. I would like to plot my actual averaged data points within 95 % confidence intervals from the model. Plotting the model is easy,
2003 Jul 25
1
glmmPQL using REML instead of ML
Hi, In glmmPQL in the MASS library, the function uses repeated calls to the function lme(), using ML. Does anyone know how you can change this to REML? I know that in lme(), the default is actually set to REML and you can also specify this as 'method=REML' or 'method'ML' but this isn't applicable to glmmPQL(). I'd appreciate any help or advice! Thanks, Emma