similar to: Wishlist: Make screeplot() a generic (PR#9541)

Displaying 20 results from an estimated 5000 matches similar to: "Wishlist: Make screeplot() a generic (PR#9541)"

2005 Sep 16
1
About princomp
Hi, I run the example for princomp for R211 I got the following error for biplot > ## The variances of the variables in the > ## USArrests data vary by orders of magnitude, so scaling is appropriate > (pc.cr <http://pc.cr> <- princomp(USArrests)) # inappropriate Erreur dans cov.wt(z) : 'x' must contain finite values only > princomp(USArrests, cor = TRUE) # =^=
2001 May 31
1
Screeplot
I'm trying to make a screeplot including the Cumulative Proportion of the Variance, something that can easily be done in S-Plus with 'screeplot(pc.object,cumulative=T)'. How can I access the Proportion of Variance in an princomp object and how could I get the Cumulative Proportion of the Variance on the screeplot? Many thanks in advance, Jan:-) --
2001 Mar 29
1
screeplot() v.s. plot()
Hi, Suppose I've got a data set that I found the eigenvalues and eigenvectors. Then I want to draw a screeplot for the eigenvalues. However it returns: Error in matrix(w.m, nc = NC) : negative extents to matrix Then I tried a plot() function on the eigenvalues of the data set, and I can successfully draw it! And the output looks like what the screeplot would show to me. Is there any
1998 Aug 26
0
prcomp & princomp - revised
My previous post about prcomp and princomp was done in some haste as I had long ago indicated to Kurt that I would try to have this ready for the June release, and it appeared that I would miss yet another release. I also need to get it out before it becomes hopelessly buried by other work. Brian Ripley kindly pointed out some errors, and also pointed out that I was suggesting replacing some
2009 Jan 14
1
Adressing list-elements
Dear all, I'm using R 2.8.1 under Vista. I programmed a Simulation with the code enclosed at the end of the eMail. After the simulation I want to analyse the columns of the single simulation-runs, i.e. e.g. Simulation[[1]][,1] sth. like that but I cannot address these columns... Can anybody please help? Best, Thomas ############################ CODE ############################
2006 Mar 25
1
Suggest patch for princomp.formula and prcomp.formula
Dear all, perhaps I am using princomp.formula and prcomp.formula in a way that is not documented to work, but then the documentation just says: formula: a formula with no response variable. Thus, to avoid a lot of typing, it would be nice if one could use '.' and '-' in the formula, e.g. > library(DAAG) > res <- prcomp(~ . - case - site - Pop - sex, possum)
2009 Mar 08
2
prcomp(X,center=F) ??
I do not understand, from a PCA point of view, the option center=F of prcomp() According to the help page, the calculation in prcomp() "is done by a singular value decomposition of the (centered and possibly scaled) data matrix, not by using eigen on the covariance matrix" (as it's done by princomp()) . "This is generally the preferred method for numerical accuracy"
2013 Mar 21
1
values for the scree plot (package psych)
Hello, I am using function princomp from the package psych. I have my principle component object mypc: mypc <- princomp(covmat=mycor) plot(mypc) # shows me a screeplot Question: how could I actually see the values displayed in the screeplot. I don't mean on the graph - I just want to know the actual value for each component (e.g., 10, 3.2, 1.8, etc.) I need to know how much variance,
2009 Nov 25
1
which to trust...princomp() or prcomp() or neither?
According to R help: princomp() uses eigenvalues of covariance data. prcomp() uses the SVD method. yet when I run the (eg., USArrests) data example and compare with my own "hand-written" versions of PCA I get what looks like the opposite. Example: comparing the variances I see: Using prcomp(USArrests) ------------------------------------- Standard deviations: [1] 83.732400 14.212402
2012 Aug 23
1
Accessing the (first or more) principal component with princomp or prcomp
Hi , To my knowledge, there're two functions that can do principal component analysis, princomp and prcomp. I don't really know the difference; the only thing I know is that when the sample size < number of variable, only prcomp will work. Could someone tell me the difference or where I can find easy-to-read reference? To access the first PC using princomp:
2009 Oct 19
2
What is the difference between prcomp and princomp?
Some webpage has described prcomp and princomp, but I am still not quite sure what the major difference between them is. Can they be used interchangeably? In help, it says 'princomp' only handles so-called R-mode PCA, that is feature extraction of variables. If a data matrix is supplied (possibly via a formula) it is required that there are at least as many units as
2005 Nov 18
1
pr[in]comp: predict single observation when data has colnames (PR#8324)
To my knowledge, this has not been reported previously, and doesn't seem to have been changed in R-devel or R-patched. If M is a matrix with coloumn names, and mod <- prcomp(M) # or princomp then predicting a single observation (row) with predict() gives the error Error in scale.default(newdata, object$center, object$scale) : length of 'center' must equal the number of
2003 Oct 16
1
princomp with more coloumns than rows: why not?
As of R 1.7.0, princomp no longer accept matrices with more coloumns than rows. I'm curious: Why was this decision made? I work a lot with data where more coloumns than rows is more of a rule than an exception (for instance spectroscopic data). To me, princomp have two advantages above prcomp: 1) It has a predict method, and 2) it has a biplot method. A biplot method shouldn't be too
2004 Nov 03
2
Princomp(), prcomp() and loadings()
In comparing the results of princomp and prcomp I find: 1. The reported standard deviations are similar but about 1% from each other, which seems well above round-off error. 2. princomp returns what I understand are variances and cumulative variances accounted for by each principal component which are all equal. "SS loadings" is always 1. 3. Same happens
2010 Jun 15
1
Getting the eigenvectors for the dependent variables from principal components analysis
Dear listserv, I am trying to perform a principal components analysis and create an output table of the eigenvalues for the dependent variables. What I want is to see which variables are driving each principal components axis, so I can make statements like, "PC1 mostly refers to seed size" or something like that. For instance, if I try the example from ?prcomp > prcomp(USArrests,
2006 Jun 26
1
princomp and prcomp confusion
When I look through archives at https://stat.ethz.ch/pipermail/r-help/2003-October/040525.html I see this: Liaw, Andy wrote: >In the `Detail' section of ?princomp: > >princomp only handles so-called Q-mode PCA, that is feature extraction of >variables. If a data matrix is supplied (possibly via a formula) it is >required that there are at least as many units as variables. For
1999 Oct 07
1
[Fwd: Libraries loading, but not really?] - it really IS a problem :-(
kalish at psy.uwa.edu.au wrote: > > I'm a newbie at R, and can't get libraries to really work. > I did this: > > library(help = mva) > cancor Canonical Correlations > cmdscale Classical (Metric) Multidimensional Scaling > dist Distance Matrix Computation > hclust Hierarchical Clustering
2011 Nov 04
1
How to use 'prcomp' with CLUSPLOT?
Hello, I have a large data set that has more columns than rows (sample data below). I am trying to perform a partitioning cluster analysis and then plot that using pca. I have tried using CLUSPLOT(), but that only allows for 'princomp' where I need 'prcomp' as I do not want to reduce my columns. Is there a way to edit the CLUSPLOT() code to use 'prcomp', please? #
2008 Sep 09
4
PCA and % variance explained
After doing a PCA using princomp, how do you view how much each component contributes to variance in the dataset. I'm still quite new to the theory of PCA - I have a little idea about eigenvectors and eigenvalues (these determine the variance explained?). Are the eigenvalues related to loadings in R? Thanks, Paul -- View this message in context:
2012 May 23
1
prcomp with previously scaled data: predict with 'newdata' wrong
Hello folks, it may be regarded as a user error to scale() your data prior to prcomp() instead of using its 'scale.' argument. However, it is a user thing that may happen and sounds a legitimate thing to do, but in that case predict() with 'newdata' can give wrong results: x <- scale(USArrests) sol <- prcomp(x) all.equal(predict(sol), predict(sol, newdata=x)) ## [1]