similar to: Dropping dimnames doesn't matter (anymore)?

Displaying 20 results from an estimated 3000 matches similar to: "Dropping dimnames doesn't matter (anymore)?"

2013 Jul 13
1
Alternative to eval(cl, parent.frame()) ?
Dear developeRs, I maintain a package 'pls', which has a main fit function mvr(), and functions plsr() and pcr() which are meant to take the same arguments as mvr() and do exactly the same, but have different default values for the 'method' argument. The three functions are all exported from the name space. In the 'pre namespace' era, I took inspiration from lm() and
2005 Sep 04
2
Help: PLSR
Hello, I have a data set with 15 variables (first one is the response) and 1200 observations. Now I use pls package to do the plsr as below. trainSet = as.data.frame(scale(trainSet, center = T, scale = T)) trainSet.plsr = mvr(formula, ncomp = 14, data = trainSet, method = "kernelpls", model = TRUE, x = TRUE, y = TRUE) from the model, I wish to know the
2007 May 25
2
R-About PLSR
hi R help group, I have installed PLS package in R and use it for princomp & prcomp commands for calculating PCA using its example file(USArrests example). But How I can use PLS for Partial least square, R square, mvrCv one more think how i can import external file in R. When I use plsr, R2, RMSEP it show error could not find function plsr, RMSEP etc. How I can calculate PLS, R2, RMSEP, PCR,
2011 May 12
1
Fw: Help with PLSR
Hi I am attempting to use plsr which is part of the pls package in r. I amconducting analysis on datasets to identify which proteins/peptides are responsible for the variance between sample groups (Biomarker Spoting) in a multivariate fashion. I have a dataset in R called "FullDataListTrans". as you can see below the structure of the data is 40 different rows representing a
2011 May 17
1
Help with PLSR with jack knife
Hi I am analysing a dataset of 40 samples each with 90,000 intensity measures for various peptides. I am trying to identify the Biomarkers (i.e. most significant peptides). I beleive that PLS with jack knifing, or alternativeley CMV(cross-model-validation) are multivariateThe 40 samples belong to four different groups. I have managed to conduct the plsr using the commands: BHPLS1 <-
2005 May 12
1
pls -- crossval vs plsr(..., CV=TRUE)
Hi, Newbie question about the pls package. Setup: Mac OS 10.3.9 R: Aqua GUI 1.01, v 2.0.1 I want to get R^2 and Q^2 (LOO and Leave-10-Out) values for each component for my model. I was running into a few problems so I played with the example a little and the results do not match up with the comments in the help pages. $ library(pls) $ data(NIR) $ testing.plsNOCV <- plsr(y ~ X, 6, data =
2007 Jul 06
1
about R, RMSEP, R2, PCR
Hi, I want to calculate PLS package in R. Now I want to calculate R, MSEP, RMSEP and R2 of PLSR and PCR using this. I also add this in library of R. How I can calculate R, MSEP, RMSEP and R2 of PLSR and PCR in R. I s any other method then please also suggest me. Simply I want to calculate these value. Thanking you. -- Nitish Kumar Mishra Junior Research Fellow BIC, IMTECH, Chandigarh, India
2009 Aug 28
2
Pls package
Hi, I have managed to format my data into a single datframe consisting of two AsIs response and predictor dataframes in order to supply the plsr command of the pls package for principal components analysis. When I execute the command, however, I get this error: > fiber1 <- plsr(respmat ~ predmat, ncomp=1, data=inputmat,validation="LOO") Error in model.frame.default(formula =
2012 Oct 04
1
data structure for plsr
I am having a similar problem understanding the data structure of the "yarn" dataset described in the "[R] data structure for plsr" posts. I have spectroscopic data I'd like to run through a PLSR and have read the tutorial series, but still do not understand the data format required for the code to process my data. My current data structure consists of a .csv file read into
2010 Feb 21
2
cross-validation in plsr package
Dear readers, can anyone give an example how to use cross-validation in the plsr package. I miss to find the number of factors proposed by cross-validation as optimum. Thank you Peter -- View this message in context: http://n4.nabble.com/cross-validation-in-plsr-package-tp1563815p1563815.html Sent from the R help mailing list archive at Nabble.com.
2010 Jul 07
2
R2 function from PLS to use a model on test data
Hello, I am having some trouble using a model I created from plsr (of train) to analyze each invididual R^2 of the 10 components against the test data. For example: mice1 <- plsr(response ~factors, ncomp=10 data=MiceTrain) R2(mice1) ##this provides the correct R2 for the Train data for 10 components ## Now my next objective is to calculate my model's R2 for each component on the
2017 Dec 05
2
PLS in R
Hello, I need help with a partial least square regression in R. I have read both the vignette and the post on R bloggers but it is hard to figure out how to do it. Here is the script I wrote: library(pls) plsrcue<- plsr(cue~fb+cn+n+ph+fung+bact+resp, data = cue, ncomp=7, na.action = NULL, method = "kernelpls", scale=FALSE, validation = "LOO", model = TRUE, x = FALSE, y =
2007 Jan 02
0
pls version 2.0-0
Version 2.0-0 of the pls package is now available on CRAN. The pls package implements partial least squares regression (PLSR) and principal component regression (PCR). Features of the package include - Several plsr algorithms: orthogonal scores, kernel pls and simpls - Flexible cross-validation - A formula interface, with traditional methods like predict, coef, plot and summary - Functions
2007 Jan 02
0
pls version 2.0-0
Version 2.0-0 of the pls package is now available on CRAN. The pls package implements partial least squares regression (PLSR) and principal component regression (PCR). Features of the package include - Several plsr algorithms: orthogonal scores, kernel pls and simpls - Flexible cross-validation - A formula interface, with traditional methods like predict, coef, plot and summary - Functions
2012 Feb 21
2
Dataframes in PLS package
I have been working with the pls procedure and have problems getting the procedure to work with matrix or frame data. I suspect the problem lies in my understanding of frames, but can't find anything in the documentation that will help. Here is what I have done: I read in an 10000 x 8 table of data, and assign the first four columns to matrix A and the second four to matrix B pls <-
2005 May 22
0
pls version 1.0-3
Version 1.0-3 of the pls package is now available on CRAN. The pls package implements partial least squares regression (PLSR) and principal component regression (PCR). Features of the package include - Several plsr algorithms: orthogonal scores, kernel pls and simpls - Flexible cross-validation - A formula interface, with traditional methods like predict, coef, plot and summary - Functions
2005 Oct 11
0
pls version 1.1-0
Version 1.1-0 of the pls package is now available on CRAN. The pls package implements partial least squares regression (PLSR) and principal component regression (PCR). Features of the package include - Several plsr algorithms: orthogonal scores, kernel pls and simpls - Flexible cross-validation - A formula interface, with traditional methods like predict, coef, plot and summary - Functions
2005 Oct 11
0
pls version 1.1-0
Version 1.1-0 of the pls package is now available on CRAN. The pls package implements partial least squares regression (PLSR) and principal component regression (PCR). Features of the package include - Several plsr algorithms: orthogonal scores, kernel pls and simpls - Flexible cross-validation - A formula interface, with traditional methods like predict, coef, plot and summary - Functions
2006 Feb 23
0
pls version 1.2-0
Version 1.2-0 of the pls package is now available on CRAN. The pls package implements partial least squares regression (PLSR) and principal component regression (PCR). Features of the package include - Several plsr algorithms: orthogonal scores, kernel pls and simpls - Flexible cross-validation - A formula interface, with traditional methods like predict, coef, plot and summary - Functions
2006 Feb 23
0
pls version 1.2-0
Version 1.2-0 of the pls package is now available on CRAN. The pls package implements partial least squares regression (PLSR) and principal component regression (PCR). Features of the package include - Several plsr algorithms: orthogonal scores, kernel pls and simpls - Flexible cross-validation - A formula interface, with traditional methods like predict, coef, plot and summary - Functions