Displaying 20 results from an estimated 4000 matches similar to: "under certain conditions, model.matrix appears to lack one column (PR#646)"
2000 Aug 28
0
under certain conditions, model.matrix appears to lack one (PR#647)
On Sun, 27 Aug 2000 rnassar@duke.edu wrote:
> Dear R Team,
>
> # Summary of the problem: setting contrasts as
> > contrasts(g) <- contr.treatment
> or > contrasts(g) <- matrix(c(1,-1,0),ncol=1)
> (i.e. without quotes around `contr.treatment' or `contr.sum', etc.)
> and fitting an lm model without an intercept results in a model matrix
> that lacks
2000 Aug 28
0
under certain conditions, model.matrix appears to lack one (PR#648)
On Mon, 28 Aug 2000, Rashid Nassar wrote:
> Dear Professor Ripley,
>
> Thank you very much for your kind explanation. If I may lamely say
> something in my defence, even as I apologize for my error: I mistook the
> sentence "the (quoted) name of a function" to mean "optionally quoted"
> because of the parentheses surrounding "quoted", and was
2011 May 11
1
Help with contrasts
Hi,
I need to build a function to generate one column for each level of a factor
in the model matrix created on an arbitrary formula (instead of using the
available contrasts options such as contr.treatment, contr.SAS, etc).
My approach to this was first to use the built-in function for
contr.treatment but changing the default value of the contrasts argument to
FALSE (I named this function
2002 Dec 01
1
generating contrast names
Dear R-devel list members,
I'd like to suggest a more flexible procedure for generating contrast
names. I apologise for a relatively long message -- I want my proposal to
be clear.
I've never liked the current approach. For example, the names generated by
contr.treatment paste factor to level names with no separation between the
two; contr.sum simply numbers contrasts (I recall an
2011 May 18
1
Need expert help with model.matrix
Dear experts:
Is it possible to create a new function based
on stats:::model.matrix.default so that an alternative factor coding is used
when the function is called instead of the default factor coding?
Basically, I'd like to reproduce the results in 'mat' below, without having
to explicitly specify my desired factor coding (identity matrices) in the
'contrasts.arg'.
dd
2010 Apr 21
5
Bugs? when dealing with contrasts
R version 2.10.1 (2009-12-14)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaborative project with
2001 Jun 15
1
contrasts in lm and lme
I am using RW 1.2.3. on an IBM PC 300GL.
Using the data bp.dat which accompanies
Helen Brown and Robin Prescott
1999 Applied Mixed Models in Medicine. Statistics in Practice.
John Wiley & Sons, Inc., New York, NY, USA
which is also found at www.med.ed.ac.uk/phs/mixed. The data file was opened
and initialized with
> dat <- read.table("bp.dat")
>
1999 May 05
1
Ordered factors , was: surrogate poisson models
For ordered factor the natural contrast coding would be to parametrize by
the succsessive differences between levels, which does not assume equal
spacing
of factor levels as does the polynomial contrasts (implicitly at least).
This requires the contr.cum, which could be:
contr.cum <- function (n, contrasts = TRUE)
{
if (is.numeric(n) && length(n) == 1)
levs <- 1:n
2007 May 17
1
model.matrix bug? Nested factor yields singular design matrix.
Hi all,
I believe this is a bug in the model.matrix function.
I'd like a second opinion before filing a bug report.
If I have a nested covariate B with multiple values for
just one level of A, I can not get a non-singular design
matrix out of model.matrix
> df <- data.frame(A = factor(c("a", "a", "x", "x"), levels = c("x",
2012 Oct 27
1
contr.sum() and contrast names
Hi!
I would like to suggest to make it possible, in one way or another, to
get meaningful contrast names when using contr.sum(). Currently, when
using contr.treatment(), one gets factor levels as contrast names; but
when using contr.sum(), contrasts are merely numbered, which is not
practical and can lead to mistakes (see code at the end of this
message).
This issue was discussed quickly in 2005
2004 Mar 03
1
Confusion about coxph and Helmert contrasts
Hi,
perhaps this is a stupid question, but i need some help about
Helmert contrasts in the Cox model.
I have a survival data frame with an unordered factor `group'
with levels 0 ... 5.
Calculating the Cox model with Helmert contrasts, i expected that
the first coefficient would be the same as if i had used treatment
contrasts, but this is not true.
I this a error in reasoning, or is it
2005 Apr 13
2
multinom and contrasts
Hi,
I found that using different contrasts (e.g.
contr.helmert vs. contr.treatment) will generate
different fitted probabilities from multinomial
logistic regression using multinom(); while the fitted
probabilities from binary logistic regression seem to
be the same. Why is that? and for multinomial logisitc
regression, what contrast should be used? I guess it's
helmert?
here is an example
2004 Feb 20
0
setting options when using eval
Hi All,
I'm using a call to eval to evaluate a linear model, however, I have found
that despite calling
options (contrasts=c("contr.sum", "contr.poly"))
prior to evaluation, my model factors are coded using the indicator
coding associated with the "contr.treatment" contrast option
As an inelegant work around I am setting the contrast option explicitly in
2024 Sep 20
1
model.matrix() may be misleading for "lme" models
Dear r-devel list members,
I'm posting this message here because it concerns the nlme package,
which is maintained by R-core. The problem I'm about to describe is
somewhere between a bug and a feature request, and so I thought it a
good idea to ask here rather posting a bug report to the R bugzilla.
I was made aware (by Ben Bolker) that the car::Anova() method for "lme"
2007 Oct 09
2
fit.contrast and interaction terms
Dear R-users,
I want to fit a linear model with Y as response variable and X a categorical variable (with 4 categories), with the aim of comparing the basal category of X (category=1) with category 4. Unfortunately, there is another categorical variable with 2 categories which interact with x and I have to include it, so my model is s "reg3: Y=x*x3". Using fit.contrast to make the
2008 May 20
1
contr.treatments query
Hi Folks,
I'm a bit puzzled by the following (example):
N<-factor(sample(c(1,2,3),1000,replace=TRUE))
unique(N)
# [1] 3 2 1
# Levels: 1 2 3
So far so good. Now:
contrasts(N)<-contr.treatment(3, base=1, contrasts=FALSE)
contrasts(N)
# 1 2
# 1 1 0
# 2 0 1
# 3 0 0
whereas:
contr.treatment(3, base=1, contrasts=FALSE)
# 1 2 3
# 1 1 0 0
# 2 0 1 0
# 3 0 0 1
contr.treatment(3, base=1,
2006 Aug 16
0
confusing about contrasts concept [long]
Tian
It appears the attachment might not have worked so I'll embed Bill's
message at the end.
Peter Alspach
> -----Original Message-----
> From: r-help-bounces at stat.math.ethz.ch
> [mailto:r-help-bounces at stat.math.ethz.ch] On Behalf Of Peter Alspach
> Sent: Thursday, 17 August 2006 8:02 a.m.
> To: T Mu; R-Help
> Subject: Re: [R] confusing about contrasts concept
2024 Sep 21
1
model.matrix() may be misleading for "lme" models
Dear list members,
After further testing, I found that the following simplified version of
model.matrix.lme(), which omits passing xlev to the default method, is
more robust. The previous version generated spurious warnings in some
circumstances.
model.matrix.lme <- function(object, ...){
data <- object$data
if (is.null(data)){
NextMethod(formula(object),
2006 Aug 17
1
Setting contrasts for polr() to get same result of SAS
Hi all,
I am trying to do a ordered probit regression using polr(), replicating a
result from SAS.
>polr(y ~ x, dat, method='probit')
suppose the model is y ~ x, where y is a factor with 3 levels and x is a
factor with 5 levels,
To get coefficients, SAS by default use the last level as reference, R by
default use the first level (correct me if I was wrong),
The result I got is a
2001 Feb 08
2
Test for multiple contrasts?
Hello,
I've fitted a parametric survival model by
> survreg(Surv(Week, Cens) ~ C(Treatment, srmod.contr),
> data = poll.surv.wo3)
where srmod.contr is the following matrix of contrasts:
prep auto poll self home
[1,] 1 1 1.0000000 0.0 0
[2,] -1 0 0.0000000 0.0 0
[3,] 0 -1 0.0000000 0.0 0
[4,] 0 0 -0.3333333 1.0 0
[5,] 0 0