similar to: MCMCglmm priors including phylogeny

Displaying 20 results from an estimated 600 matches similar to: "MCMCglmm priors including phylogeny"

2011 Feb 17
0
Multi-response MCMCglmm (gaussian and zapoisson)
Dear MCMCglmm users, I am currently struggling with the specification of a proper prior and model formula for a multi-response MCMCglmm with two of the three response variables being Gaussian and the third being za-poisson. The model includes several fixed effects and three nested random effects. In general, I would prefer to fit a model with a fixed effect of trait and suppressed intercept for
2018 May 01
2
Specifying priors in a multi-response MCMCglmm
Hi Bert, That was distinctly unhelpful, and your outward hostility to a field you obviously don't understand reveals a regrettable level of ignorance. By the way, my research is Anthropology despite my job title. Michelle On Tue, May 1, 2018 at 2:48 PM, Bert Gunter <bgunter.4567 at gmail.com> wrote: > 1. (Mainly) Statistical issues are generally off topic on this list. > You
2018 May 01
0
Specifying priors in a multi-response MCMCglmm
1. (Mainly) Statistical issues are generally off topic on this list. You might want to try the r-sig-mixed-models list instead. 2. However, I think a better answer is to seek local statistical expertise in order to have an extended discussion about your research intent in order to avoid producing yet more irreproducible psychological research. Cheers, Bert Bert Gunter "The trouble with
2018 May 01
2
Specifying priors in a multi-response MCMCglmm
Hi all, I previously emailed about a multinomial model, and after seeking some additional help, realized that since my response/outcome variables are not mutually exclusive, I need to use a multi-response model that is *not* multinomial. I'm now trying to figure out how to specify the priors on the multi-response model. Any help would be much appreciated. My data look like this: X
2018 Mar 23
0
MCMCglmm multinomial model results
> On Mar 22, 2018, at 1:31 PM, Michelle Kline <michelle.ann.kline at gmail.com> wrote: > > Hi, > > Thanks in advance for any help on this question. I'm running multinomial > models using the MCMCglmm package. The models have 5 outcome variables > (each with count data), and an additional two random effects built into the > models. The issue is that when I use
2018 Mar 22
2
MCMCglmm multinomial model results
Hi, Thanks in advance for any help on this question. I'm running multinomial models using the MCMCglmm package. The models have 5 outcome variables (each with count data), and an additional two random effects built into the models. The issue is that when I use the following code, the summary only gives me results for four of the outcome variables. Here is the code for my model: m3.random
2018 Mar 24
1
MCMCglmm multinomial model results
Hi David, Thanks for your comment. I haven't posted the data because they are unpublished and include human subjects so there are issues with sharing on a list serv, but I thought perhaps someone had encountered a similar problem and would already know the answer. I will reconsider whether my University's ethics approval would allow me to post the data and update the question if I think
2018 May 01
0
[FORGED] Re: Specifying priors in a multi-response MCMCglmm
On 02/05/18 09:53, Michelle Kline wrote: > Hi Bert, > > That was distinctly unhelpful Not if you actually follow Bert's advice. > and your outward hostility to a field you > obviously don't understand reveals a regrettable level of ignorance. I didn't see any hostility to any field. Bert, like many of us, objects to people blithely and arrogantly applying possibly
2012 Sep 12
7
multinomial MCMCglmm
Dear all, I would like to add mixed effects in a multinomial model and I am trying to use MCMCglmm for that. The main problem I face: my data set consits of a trapping data set, where the observation at eah trap (1 or 0 for each species) have been aggregated per traplines. Therefore we have a proportion of presence/absence for each species per trapline. ex: ID_line mesh habitat Apsy Mygl
2011 Jun 01
1
How to write random effect in MCMCglmm
Hi All, The data set that I have is a cluster data, and I want to run a HLM mixed model with multi-level response. Here is my data set: response: - Level (num: 1, 2, 3, 4, 5 - 5 levels) Covariates: - Type (Factor: A, B, C - 3 levels) - yr (num: 2006, 2007, ...) - Male (num: 0=not Male, 1=Male - 2 levels) - Ethnicity (Factor: A, B, H, ..., - 7 levels) - ELL (num: 0, 1, - 2
2012 Feb 08
0
MCMCglmm
Dear Jarrod, I have a data set where residual have a heavy-tailed distribution with some extreme residual values and consequently the distribution deviates from the Gaussian one. Is it possible to include an skewed-normal density for the residual in MCMCglmm package? I have done the analysis of this data with both ASReml & MCMCglmm. The results are similar and outcome from MCMCglmm
2012 Jun 23
0
Using at.level() with a MCMCglmm zero-inflated poisson model
I have a question for users of MCMCglmm that have experience implementing the zero-inflated poisson model. I find that the documentation, and previous questions, do not offer a lot of clear guidance on specifying and interpreting the zipoisson model. In particular, I see a lot of zero-inflated poisson examples that use the at.level(trait, x):variableName syntax. Specifically, the MCMCglmm
2012 Feb 13
1
MCMCglmm with cross-classified random effects
Dear R-users, I would like to fit a glmm with cross-classified random effects with the function MCMCglmm. Something along the lines: model1<-MCMCglmm(response~pred1, random=~re1+re2, data=data) where re1 and re2 should be crossed random effects. I was wondering whether you could tell me specifying cross-classified random effects in MCMCglmm requires a particular syntax? Are there any
2012 May 03
0
LME4 to MCMCglmm
Hi all, I am trying to run an lme4 model (logistic regression with mixed effects) in MCMCglmm but am unsure how to implement it properly. Currently, my lme4 model formula looks as follows: "outcome ~ (1 + var1 + var2 | study) + var1 + var2" In English, this means that I am fitting a random effects model, where the intercept, var1 and var2 are jointly distributed according to study.
2017 Aug 23
0
MCMCglmm issue
When I try to use the following code, I get the error message shown. This is quite confusing to me, insofar as family is a recognized argument for MCMCglmm. Can anyone spot an obvious glitch? model1 <-MCMCglmm(fixed = NoRRVpos ~ Year, random = ~County, family="zipoisson", data=Rabies_Project_Init)Error in MCMCglmm(fixed = NoRRVpos ~ Year, random = ~County, family =
2009 Dec 20
1
Problems in installing MCMCglmm package
Dear R-Helpers, I am having troubles with installing with MCMCglmm package and I get the following error with a package "Matrix" Warning in library(pkg, character.only = TRUE, logical.return = TRUE, lib.loc = lib.loc) : there is no package called 'Matrix' Error: package 'Matrix' could not be loaded Execution halted ERROR: lazy loading failed for package
2012 Nov 06
1
Multinomial MCMCglmm
Thanks for your answers Stephen and Ben, I hope I am posting on the correct list now. I managed so far to run the multinomial model with random effect with the following command: MCMCglmm(fixed=cbind(Apsy,Mygl,Crle,Crru,Miag,empty) ~ habitat:trait,random=~idh(trait):mesh,family="multinomial12", data=dataA,rcov=~trait:units) (where multiple responses are different species, Habitat
2010 Mar 29
2
mcmcglmm starting value example
Hi R-users: Can anyone give an example of giving starting values for MCMCglmm? I can't find any anywhere. I have 1 random effect (physicians, and there are 50 of them) and family="ordinal"? How can I specify starting values for my fixed effects? It doesn't seem to have the option to do so. Thanks, Ping
2011 Aug 23
1
pMCMC and HPD in MCMCglmm
Dear R users, I?d like to pose aquestion about pMCMC and HDP. I have performed a mixed logistic regression by MCMCglmm (a very good package) obtaining the following results: Iterations = 250001:799901 Thinning interval = 100 Sample size = 5500 DIC: 10.17416 G-structure: ~ID_an post.mean l-95% CI u-95% CIeff.samp ID_an 0.7023 0.0001367 3.678 2126 R-structure: ~units post.mean l-95%
2018 May 03
1
MCMCglmm - metric of the estimates
Hi, my question is probably amateurish but I can't seem to find the answer anywhere. In what metric are the MCMCglmm package's posterior means for family = "categorical"? I suppose that they can't be odds ratios and probabilites as my numbers are outside their bounds. So I'm thinking ? are they just basic regression coefficients conceptually equal to those obtained by