Displaying 20 results from an estimated 1000 matches similar to: "How to find eigenfunctions and eigenvalues of a fourth order ODE"
2011 Nov 14
0
Fwd: How to compute eigenvectors and eigenvalues?
Inicio del mensaje reenviado:
> De: Arnau Mir <arnau.mir@uib.es>
> Fecha: 14 de noviembre de 2011 13:24:31 GMT+01:00
> Para: Martin Maechler <maechler@stat.math.ethz.ch>
> Asunto: Re: [R] How to compute eigenvectors and eigenvalues?
>
> Sorry, but I can't explain very well.
>
>
> The matrix 4*mp is:
>
> 4*mp
> [,1] [,2] [,3]
> [1,]
2011 May 27
1
eigenvalues and correlation matrices
I'm trying to test if a correlation matrix is positive semidefinite.
My understanding is that a matrix is positive semidefinite if it is
Hermitian and all its eigenvalues are positive. The values in my
correlation matrix are real and the layout means that it is symmetric.
This seems to satisfy the Hermitian criterion so I figure that my real
challenge is to check if the eigenvalues are all
2009 Dec 01
1
eigenvalues of complex matrices
Dear all,
I want to compute the eigenvalues of a complex matrix for some statistics.
Comparing it to its matlab/octave sibling, I don't get the same eigenvalues
in R computing it from the exact same matrix.
In R, I used eigen() and arpack() that give different eigenvalues. In
matlab/octave I used eig() and eigs() that give out the same eigenvalues but
different to the R ones.
For real
2005 May 30
3
how to invert the matrix with quite small eigenvalues
Dear all,
I encounter some covariance matrix with quite small eigenvalues
(around 1e-18), which are smaller than the machine precision. The
dimension of my matrix is 17. Here I just fake some small matrix for
illustration.
a<-diag(c(rep(3,4),1e-18)) # a matrix with small eigenvalues
b<-matrix(1:25,ncol=5) # define b to get an orthogonal matrix
b<-b+t(b)
bb<-eigen(b,symmetric=T)
2013 Mar 14
2
Same eigenvalues but different eigenvectors using 'prcomp' and 'principal' commands
Dear all,
I've used the 'prcomp' command to
calculate the eigenvalues and eigenvectors of a matrix(gg).
Using the command 'principal' from the
'psych' packageĀ I've performed the same exercise. I got the same
eigenvalues but different eigenvectors. Is there any reason for that
difference?
Below are the steps I've followed:
1. PRCOMP
#defining the matrix
2012 Mar 15
1
eigenvalues of matrices of partial derivatives with ryacas
Hello,
I am trying to construct two matrices, F and V, composed of partial
derivatives and then find the eigenvalues of F*Inverse(V). I have the
following equations in ryacas notation:
> library(Ryacas)
> FIh <- Expr("betah*Sh*Iv")
> FIv <- Expr("betav*Sv*Ih")
> VIh <- Expr("(muh + gamma)*Ih")
> VIv <- Expr("muv*Iv")
I
2004 Jun 28
3
How to determine the number of dominant eigenvalues in PCA
Dear All,
I want to know if there is some easy and reliable way
to estimate the number of dominant eigenvalues
when applying PCA on sample covariance matrix.
Assume x-axis is the number of eigenvalues (1, 2, ....,n), and y-axis is the
corresponding eigenvalues (a1,a2,..., an) arranged in desceding order.
So this x-y plot will be a decreasing curve. Someone mentioned using the elbow (knee)
2004 Dec 10
1
How to circumvent negative eigenvalues in the capscale function
Dear All
I am trying to do a partial canonical analysis of principal coordinates
using Bray-Curtis distances. The capscale addin to R appears to be the only
way of doing it, however, when I try and calculate a Bray-Curtis distance
matrix either using Capscale or Vegedist (capscale I understand uses
Vegedist anyway to calculate its distance matrix), R uses up all available
memory on the computer,
2011 Nov 14
2
How to compute eigenvectors and eigenvalues?
Hello.
Consider the following matrix:
mp <- matrix(c(0,1/4,1/4,3/4,0,1/4,1/4,3/4,1/2),3,3,byrow=T)
> mp
[,1] [,2] [,3]
[1,] 0.00 0.25 0.25
[2,] 0.75 0.00 0.25
[3,] 0.25 0.75 0.50
The eigenvectors of the previous matrix are 1, 0.25 and 0.25 and it is not a diagonalizable matrix.
When you try to find the eigenvalues and eigenvectors with R, R responses:
> eigen(mp)
$values
[1]
2008 Jun 18
2
highest eigenvalues of a matrix
DeaR list,
I happily use eigen() to compute the eigenvalues and eigenvectors of
a fairly large matrix (200x200, say), but it seems over-killed as its
rank is limited to typically 2 or 3. I sort of remember being taught
that numerical techniques can find iteratively decreasing eigenvalues
and corresponding orthogonal eigenvectors, which would provide a nice
alternative (once I have the
2004 Oct 19
3
matrix of eigenvalues
I thought that the function
eigen(A)
will return a matrix with eigenvectors that are independent of each
other (thus forming a base and the matrix being invertible). This
seems not to be the case in the following example
A=matrix(c(1,2,0,1),nrow=2,byrow=T)
eigen(A) ->ev
solve(ev$vectors)
note that I try to get the upper triangular form with eigenvalues on
the diagonal and (possibly) 1 just
2003 Jun 03
3
lda: how to get the eigenvalues
Dear R-users
How can I get the eigenvalues out of an lda analysis?
thanks a lot
christoph
--
Christoph Lehmann <christoph.lehmann at gmx.ch>
2005 Jun 16
2
Computing generalized eigenvalues
I need to compute generalized eigenvalues. The eigen function in base
doesn't do it and I can't find a package that does.
As I understand it, Lapack __can__ computer them
(http://www.netlib.org/lapack/lawn41/node111.html) and R can use
Lapack. If there is no function already, can I access Lapack from R
and use those routines directly?
Thank you,
Joshua Gilbert.
2010 Sep 17
1
How to find STRESS criteria in MDS when there are negative eigenvalues....
Hi,
I want to know whether there is any function in R to find STRESS after using cmdscale and estimating the coordinates, I have written these functions to find stress (for p =1,2,3,4,5)
stress<-rep(0,5)
for(p in 1:5)
{
datahat<-cmdscale(d,p)
deltahat<-as.matrix(dist(datahat))
a<-0
b<-0
for(i in 1:n)
{
for(j in 1:n)
{
a<-d[i,j]^2+a
b<-(d[i,j]-deltahat[i,j])^2+b
}
}
2004 Apr 02
0
picking out eigenvalues of 1
After making
E <- eigen( something )
I would like to extract those eigenvectors which have an eigenvalue of
1. If I had an isone() function, I would simply say
E$vectors[,which(isone(E))]
but the problem is that I have no such thing. I found all.equal, so I
could test for all.equal(x, 1), but for complex numbers, I need to use
something like all.equal(x, 1+0i), don't I?
I tried
2011 Jan 29
1
Regularization of a matrix that has some tiny negative eigenvalues
Dear all:
In what I am doing I sometimes get a (Hessian) matrix that has a
couple of tiny negative eigenvalues (e.g. -6 * 10^-17). So, I can't
run a Cholesky decomp on it - but I need to.
Is there an established way to regularize my (Hessian) matrix (e.g.,
via some transformation) that would allow me to get a semi-positive
definite matrix to be used in Cholesky decomp?
Or should I try some
2010 May 05
3
Symbolic eigenvalues and eigenvectors
Let's say I had a matrix like this:
library(Ryacas)
x<-Sym("x")
m<-matrix(c(cos (x), sin(x), -sin(x), cos(x)), ncol=2)
How can I use R to obtain the eigenvalues and eigenvectors?
Thanks,
John
[[alternative HTML version deleted]]
2012 Mar 09
1
Eigenvalue calculation of sparse matrices
Dear all,
I am currently working on the calculation of eigenvalues (and -vectors)
of large matrices. Since these are mostly sparse matrices and I remember
some specific functionalities in MATLAB for sparse matrices, I started a
research how to optimize the calculation of eigenvalues of a sparse matrix.
The function eigen itself works with the LAPACK library which has no
special handling for
2005 Aug 03
3
prcomp eigenvalues
Hello,
Can you get eigenvalues in addition to eigevectors using prcomp? If so how?
I am unable to use princomp due to small sample sizes.
Thank you in advance for your help!
Rebecca Young
--
Rebecca Young
Graduate Student
Ecology & Evolutionary Biology, Badyaev Lab
University of Arizona
1041 E Lowell
Tucson, AZ 85721-0088
Office: 425BSW
rlyoung at email.arizona.edu
(520) 621-4005
2004 Apr 07
1
eigenvalues for a sparse matrix
Hi,
I have the following problem. It has two parts.
1. I need to calculate the stationary probabilities of a Markov chain,
eg if the transition matrix is P, I need x such that
xP = x
in other words, the left eigenvectors of P which have an eigenvalue of
one.
Currently I am using eigen(t(P)) and then pick out the vectors I need.
However, this seems to be an overkill (I only need a single