Displaying 20 results from an estimated 900 matches similar to: "MCMCglmm with cross-classified random effects"
2005 Aug 04
1
Where the error message comes from?
Hi all:
I get the following error message that I am not able to resolve.
Error in if (const(t, min(1e-08, mean(t)/1e+06))) { :
missing value where TRUE/FALSE needed
It appears right before the last data.frame statement.
Below is the program that simulates data from one way random effects
model and then computes normality and bootstrap confidence interval for
2008 Oct 01
0
xpred.rpart() in library(mvpart)
R-users
E-mail: r-help@r-project.org
Hi! R-users.
http://finzi.psych.upenn.edu/R/library/mvpart/html/xpred.rpart.html
says:
data(car.test.frame)
fit <- rpart(Mileage ~ Weight, car.test.frame)
xmat <- xpred.rpart(fit)
xerr <- (xmat - car.test.frame$Mileage)^2
apply(xerr, 2, sum) # cross-validated error estimate
# approx same result as rel. error from printcp(fit)
apply(xerr, 2,
2007 Sep 18
10
Routes
hi all,
I want to move some routing tasks out of the router and into the
controller. The goal is to make Merb feel less like mod_rewrite and
give the user more control at the controller. The new Router is
simple: it takes the path_info (not the whole request) then outputs a
controller class and some parameters from the path matching. The rest
of the routing would be done at the controller level.
2011 Jun 01
1
How to write random effect in MCMCglmm
Hi All,
The data set that I have is a cluster data, and I want to run a HLM mixed
model with multi-level response. Here is my data set:
response:
- Level (num: 1, 2, 3, 4, 5 - 5 levels)
Covariates:
- Type (Factor: A, B, C - 3 levels)
- yr (num: 2006, 2007, ...)
- Male (num: 0=not Male, 1=Male - 2 levels)
- Ethnicity (Factor: A, B, H, ..., - 7 levels)
- ELL (num: 0, 1, - 2
2018 Mar 23
0
MCMCglmm multinomial model results
> On Mar 22, 2018, at 1:31 PM, Michelle Kline <michelle.ann.kline at gmail.com> wrote:
>
> Hi,
>
> Thanks in advance for any help on this question. I'm running multinomial
> models using the MCMCglmm package. The models have 5 outcome variables
> (each with count data), and an additional two random effects built into the
> models. The issue is that when I use
2018 Mar 24
1
MCMCglmm multinomial model results
Hi David,
Thanks for your comment. I haven't posted the data because they are
unpublished and include human subjects so there are issues with sharing on
a list serv, but I thought perhaps someone had encountered a similar
problem and would already know the answer.
I will reconsider whether my University's ethics approval would allow me to
post the data and update the question if I think
2018 Mar 22
2
MCMCglmm multinomial model results
Hi,
Thanks in advance for any help on this question. I'm running multinomial
models using the MCMCglmm package. The models have 5 outcome variables
(each with count data), and an additional two random effects built into the
models. The issue is that when I use the following code, the summary only
gives me results for four of the outcome variables.
Here is the code for my model:
m3.random
2013 Feb 04
2
re(4) problems with GA-H77N-WIFI
Hello,
I need some advice how to debug this issue ...
Recently I got a new mainboard for a router, it's a
Gigabyte GA-H77N-WIFI with two onboard re(4) NICs.
The problem is that re0 works fine and re1 doesn't:
It doesn't receive any packets. Tcpdump displays all
outgoing packets, but no incoming ones on re1.
Ifconfig shows the link correctly (100 or 1000 Mbit,
depending on where I
2009 Dec 20
1
Problems in installing MCMCglmm package
Dear R-Helpers,
I am having troubles with installing with MCMCglmm package and I get the
following error with a package "Matrix"
Warning in library(pkg, character.only = TRUE, logical.return = TRUE,
lib.loc = lib.loc) :
there is no package called 'Matrix'
Error: package 'Matrix' could not be loaded
Execution halted
ERROR: lazy loading failed for package
2012 Sep 12
7
multinomial MCMCglmm
Dear all,
I would like to add mixed effects in a multinomial model and I am trying
to use MCMCglmm for that.
The main problem I face: my data set consits of a trapping data set,
where the observation at eah trap (1 or 0 for each species) have been
aggregated per traplines. Therefore we have a proportion of
presence/absence for each species per trapline.
ex:
ID_line mesh habitat Apsy Mygl
2012 Nov 06
1
Multinomial MCMCglmm
Thanks for your answers Stephen and Ben,
I hope I am posting on the correct list now.
I managed so far to run the multinomial model with random effect with the
following command:
MCMCglmm(fixed=cbind(Apsy,Mygl,Crle,Crru,Miag,empty) ~
habitat:trait,random=~idh(trait):mesh,family="multinomial12",
data=dataA,rcov=~trait:units)
(where multiple responses are different species,
Habitat
2008 Dec 02
2
Freebsd 7 STABLE 200807 amd64 - Realtek 8168 not working
I have an Asus P5Q-WS running FreeBSD 7 and the onboard Realtek NIC's
are not being detected.
No Kernel modifications as this is a fresh install.
pciconf -lv :
re0@pci0:3:0:0: class=0x020000 card=0x82c61043 chip=0x816810ec
rev=0x02 hdr=0x00
vendor = 'Realtek Semiconductor'
device = 'RTL8168/8111 PCI-E Gigabit Ethernet NIC'
class = network
2010 Mar 29
2
mcmcglmm starting value example
Hi R-users:
Can anyone give an example of giving starting values for MCMCglmm?
I can't find any anywhere.
I have 1 random effect (physicians, and there are 50 of them)
and family="ordinal"?
How can I specify starting values for my fixed effects? It doesn't seem to have the option to do so.
Thanks, Ping
2018 May 01
0
Specifying priors in a multi-response MCMCglmm
1. (Mainly) Statistical issues are generally off topic on this list.
You might want to try the r-sig-mixed-models list instead.
2. However, I think a better answer is to seek local statistical
expertise in order to have an extended discussion about your research
intent in order to avoid producing yet more irreproducible
psychological research.
Cheers,
Bert
Bert Gunter
"The trouble with
2011 Aug 23
1
pMCMC and HPD in MCMCglmm
Dear R users,
I?d like to pose aquestion about pMCMC and HDP.
I have performed a mixed logistic regression by MCMCglmm (a very good package)
obtaining the following results:
Iterations = 250001:799901
Thinning interval = 100
Sample size = 5500
DIC: 10.17416
G-structure: ~ID_an
post.mean l-95% CI u-95% CIeff.samp
ID_an 0.7023 0.0001367 3.678 2126
R-structure: ~units
post.mean l-95%
2018 May 01
2
Specifying priors in a multi-response MCMCglmm
Hi all,
I previously emailed about a multinomial model, and after seeking some
additional help, realized that since my response/outcome variables are not
mutually exclusive, I need to use a multi-response model that is *not*
multinomial. I'm now trying to figure out how to specify the priors on the
multi-response model. Any help would be much appreciated.
My data look like this:
X
2011 Sep 15
1
MCMCglmm heteroscedasticity dependent on predictor
Hi,
I have a dataset where the residual variance decreases with on one of
the predictors (population size).
Currently, the full model looks like this:
prior<-list(R=list(V=1e-16, nu=-2),G1=list(V=diag(2), nu=2))
m<-MCMCglmm(response~poly(population size,2)*poly(other
predictor,2)+time, random=~us(1+time):population, data=data,
prior=prior)
Basically, it's a random regression with
2011 Feb 17
0
Multi-response MCMCglmm (gaussian and zapoisson)
Dear MCMCglmm users,
I am currently struggling with the specification of a proper prior and model formula for a multi-response MCMCglmm with two of the three response variables being Gaussian and the third being za-poisson. The model includes several fixed effects and three nested random effects.
In general, I would prefer to fit a model with a fixed effect of trait and suppressed intercept for
2012 Feb 08
0
MCMCglmm
Dear Jarrod,
I have a data set where residual have a heavy-tailed distribution with
some extreme residual values and consequently the distribution deviates
from the Gaussian one.
Is it possible to include an skewed-normal density for the residual in
MCMCglmm package?
I have done the analysis of this data with both ASReml & MCMCglmm. The
results are similar and outcome from MCMCglmm
2012 Jun 23
0
Using at.level() with a MCMCglmm zero-inflated poisson model
I have a question for users of MCMCglmm that have experience implementing
the zero-inflated poisson model.
I find that the documentation, and previous questions, do not offer a lot
of clear guidance on specifying and interpreting the zipoisson model. In
particular, I see a lot of zero-inflated poisson examples that use the
at.level(trait, x):variableName syntax.
Specifically, the MCMCglmm