similar to: Choosing glmnet lambda values via caret

Displaying 20 results from an estimated 2000 matches similar to: "Choosing glmnet lambda values via caret"

2012 Feb 10
1
Custom caret metric based on prob-predictions/rankings
I'm dealing with classification problems, and I'm trying to specify a custom scoring metric (recall at p, ROC, etc.) that depends on not just the class output but the probability estimates, so that caret::train can choose the optimal tuning parameters based on this metric. However, when I supply a trainControl summaryFunction, the data given to it contains only class predictions, so the
2012 Nov 23
1
caret train and trainControl
I am used to packages like e1071 where you have a tune step and then pass your tunings to train. It seems with caret, tuning and training are both handled by train. I am using train and trainControl to find my hyper parameters like so: MyTrainControl=trainControl( method = "cv", number=5, returnResamp = "all", classProbs = TRUE ) rbfSVM <- train(label~., data =
2009 Jan 15
2
problems with extractPrediction in package caret
Hi list, I´m working on a predictive modeling task using the caret package. I found the best model parameters using the train() and trainControl() command. Now I want to evaluate my model and make predictions on a test dataset. I tried to follow the instructions in the manual and the vignettes but unfortunately I´m getting an error message I can`t figure out. Here is my code: rfControl <-
2008 Sep 18
1
caret package: arguments passed to the classification or regression routine
Hi, I am having problems passing arguments to method="gbm" using the train() function. I would like to train gbm using the laplace distribution or the quantile distribution. here is the code I used and the error: gbm.test <- train(x.enet, y.matrix[,7], method="gbm", distribution=list(name="quantile",alpha=0.5), verbose=FALSE,
2009 Jul 12
1
Splitting dataset for Tuning Parameter with Cross Validation
Hi, My question might be a little general. I have a number of values to select for the complexity parameters in some classifier, e.g. the C and gamma in SVM with RBF kernel. The selection is based on which values give the smallest cross validation error. I wonder if the randomized splitting of the available dataset into folds is done only once for all those choices for the parameter values, or
2013 Mar 06
1
CARET and NNET fail to train a model when the input is high dimensional
The following code fails to train a nnet model in a random dataset using caret: nR <- 700 nCol <- 2000 myCtrl <- trainControl(method="cv", number=3, preProcOptions=NULL, classProbs = TRUE, summaryFunction = twoClassSummary) trX <- data.frame(replicate(nR, rnorm(nCol))) trY <- runif(1)*trX[,1]*trX[,2]^2+runif(1)*trX[,3]/trX[,4] trY <-
2009 Jun 08
3
caret package
Hi all I am using the caret package and having difficulty in obtaining the results using regression, I used the glmnet to model and trying to get the coefficients and the model parameters I am trying to use the extractPrediction to obtain a confusion matrix and it seems to be giving me errors. x<-read.csv("x.csv", header=TRUE); y<-read.csv("y.csv", header=TRUE);
2012 May 30
1
caret() train based on cross validation - split dataset to keep sites together?
Hello all, I have searched and have not yet identified a solution so now I am sending this message. In short, I need to split my data into training, validation, and testing subsets that keep all observations from the same sites together ? preferably as part of a cross validation procedure. Now for the longer version. And I must confess that although my R skills are improving, they are not so
2023 May 09
1
RandomForest tuning the parameters
Hi Sacha, On second thought, perhaps this is more the direction that you want ... X2 = cbind(X_train,y_train) colnames(X2)[3] = "y" regr2<-randomForest(y~x1+x2, data=X2,maxnodes=10, ntree=10) regr regr2 #Make prediction predictions= predict(regr, X_test) predictions2= predict(regr2, X_test) HTH, Eric On Tue, May 9, 2023 at 6:40?AM Eric Berger <ericjberger at gmail.com>
2010 Jan 25
0
glmnet in caret packge
Dear all, I want to train my model with LASSO using caret package (glmnet). So, in glmnet, there are two parameters, alpha and lambda. How can I fix my alpha=1 to get a lasso model? con<-trainControl(method="cv",number=10) model <- train(X, y, "glmnet", metric="RMSE",tuneLength = 10, trControl = con) Thanks Alex Roy [[alternative HTML
2011 May 12
2
Can ROC be used as a metric for optimal model selection for randomForest?
Dear all, I am using the "caret" Package for predictors selection with a randomForest model. The following is the train function: rfFit<- train(x=trainRatios, y=trainClass, method="rf", importance = TRUE, do.trace = 100, keep.inbag = TRUE, tuneGrid = grid, trControl=bootControl, scale = TRUE, metric = "ROC") I wanted to use ROC as the metric for variable
2010 Nov 22
1
Sporadic errors when training models using CARET
Hi. I am trying to construct a svmLinear model using the "caret" package (see code below). Using the same data, without changing any setting, sometimes it constructs the model successfully, and sometimes I get an index out of bounds error. Is this unexpected behaviour? I would appreciate any insights this issue. Thanks. ~Kendric > train.y [1] S S S S R R R R R R R R R R R R R R R
2011 Aug 28
1
Trying to extract probabilities in CARET (caret) package with a glmStepAIC model
Dear developers, I have jutst started working with caret and all the nice features it offers. But I just encountered a problem: I am working with a dataset that include 4 predictor variables in Descr and a two-category outcome in Categ (codified as a factor). Everything was working fine I got the results, confussion matrix etc. BUT for obtaining the AUC and predicted probabilities I had to add
2012 May 15
1
caret: Error when using rpart and CV != LOOCV
Hy, I got the following problem when trying to build a rpart model and using everything but LOOCV. Originally, I wanted to used k-fold partitioning, but every partitioning except LOOCV throws the following warning: ---- Warning message: In nominalTrainWorkflow(dat = trainData, info = trainInfo, method = method, : There were missing values in resampled performance measures. ----- Below are some
2012 Jul 12
1
Caret: Use timingSamps leads to error
I want to use the caret package and found out about the timingSamps obtion to obtain the time which is needed to predict results. But, as soon as I set a value for this option, the whole model generation fails. Check this example: ------------------------- library(caret) tc=trainControl(method='LGOCV', timingSamps=10) tcWithout=trainControl(method='LGOCV')
2013 Jun 11
1
Caret train with glmnet give me Error "arguments imply differing number of rows"
Hello, I'm training a set of data with Caret package using an elastic net (glmnet). Most of the time train works ok, but when the data set grows in size I get the following error: Error en { : task 1 failed - "arguments imply differing number of rows: 9, 10" and several warnings like this one: 1: In eval(expr, envir, enclos) : model fit failed for Resample01 My call to train
2013 Mar 02
2
caret pls model statistics
Greetings, I have been exploring the use of the caret package to conduct some plsda modeling. Previously, I have come across methods that result in a R2 and Q2 for the model. Using the 'iris' data set, I wanted to see if I could accomplish this with the caret package. I use the following code: library(caret) data(iris) #needed to convert to numeric in order to do regression #I
2011 May 05
1
[caret package] [trainControl] supplying predefined partitions to train with cross validation
Hi all, I run R 2.11.1 under ubuntu 10.10 and caret version 2.88. I use the caret package to compare different models on a dataset. In order to compare their different performances I would like to use the same data partitions for every models. I understand that using a LGOCV or a boot type re-sampling method along with the "index" argument of the trainControl function, one is able to
2009 Jun 30
2
NaiveBayes fails with one input variable (caret and klarR packages)
Hello, We have a system which creates thousands of regression/classification models and in cases where we have only one input variable NaiveBayes throws an error. Maybe I am mistaken and I shouldn't expect to have a model with only one input variable. We use R version 2.6.0 (2007-10-03). We use caret (v4.1.19), but have tested similar code with klaR (v.0.5.8), because caret relies on
2013 Nov 15
1
Inconsistent results between caret+kernlab versions
I'm using caret to assess classifier performance (and it's great!). However, I've found that my results differ between R2.* and R3.* - reported accuracies are reduced dramatically. I suspect that a code change to kernlab ksvm may be responsible (see version 5.16-24 here: http://cran.r-project.org/web/packages/caret/news.html). I get very different results between caret_5.15-61 +