similar to: Plotting a date variable after GAM

Displaying 20 results from an estimated 9000 matches similar to: "Plotting a date variable after GAM"

2007 Jun 22
1
two basic question regarding model selection in GAM
Qusetion #1 ********* Model selection in GAM can be done by using: 1. step.gam {gam} : A directional stepwise search 2. gam {mgcv} : Smoothness estimation using GCV or UBRE/AIC criterion Suppose my model starts with a additive model (linear part + spline part). Using gam() {mgcv} i got estimated degrees of freedom(edf) for the smoothing splines. Now I want to use the functional form of my model
2007 Oct 05
2
question about predict.gam
I'm fitting a Poisson gam model, say model<-gam(a65tm~as.factor(day.week )+as.factor(week)+offset(log(pop65))+s(time,k=10,bs="cr",fx=FALSE,by=NA,m=1),sp=c( 0.001),data=dati1,family=poisson) Currently I've difficulties in obtaining right predictions by using gam.predict function with MGCV package in R version 2.2.1 (see below my syntax).
2011 Dec 09
3
gam, what is the function(s)
Hello, I'd like to understand 'what' is predicting the response for library(mgcv) gam? For example: library(mgcv) fit <- gam(y~s(x),data=as.data.frame(l_yx),family=binomial) xx <- seq(min(l_yx[,2]),max(l_yx[,2]),len=101) plot(xx,predict(fit,data.frame(x=xx),type="response"),type="l") I want to see the generalized function(s) used to predict the response
2004 Dec 01
2
step.gam
Dear R-users: Im trying (using gam package) to develop a stepwise analysis. My gam object contains five pedictor variables (a,b,c,d,e,f). I define the step.gam: step.gam(gamobject, scope=list("a"= ~s(a,4), "b"= ~s(b,4), "c"= ~s(c,4), "d"= ~s(d,4), "e"= ~s(e,4), "f"= ~s(f,4))) However, the result shows a formula containing the whole
2008 Jun 11
1
mgcv::gam error message for predict.gam
Sometimes, for specific models, I get this error from predict.gam in library mgcv: Error in complete.cases(object) : negative length vectors are not allowed Here's an example: model.calibrate <- gam(meansalesw ~ s(tscore,bs="cs",k=4), data=toplot, weights=weight, gam.method="perf.magic") > test <- predict(model.calibrate,newdata) Error in
2007 Dec 13
1
Two repeated warnings when runing gam(mgcv) to analyze my dataset?
Dear all, I run the GAMs (generalized additive models) in gam(mgcv) using the following codes. m.gam <-gam(mark~s(x)+s(y)+s(lstday2004)+s(ndvi2004)+s(slope)+s(elevation)+disbinary,family=binomial(logit),data=point) And two repeated warnings appeared. Warnings$B!'(B 1: In gam.fit(G, family = G$family, control = control, gamma = gamma, ... : Algorithm did not converge 2: In gam.fit(G,
2007 Jul 24
2
plotting gam models
Hi everybody, I am working with gams and I have found some questions when plotting gams models. I am using mgcv, and my model looks something like this: model<- gam(x ~ s(lat,long)) I can plot the output of the model using plot(model) or plot.gam(model) and I get a surface plot. That is ok, but what I want to do now is to extract the data used to perform the surface plot. Like that I
2005 Oct 05
3
testing non-linear component in mgcv:gam
Hi, I need further help with my GAMs. Most models I test are very obviously non-linear. Yet, to be on the safe side, I report the significance of the smooth (default output of mgcv's summary.gam) and confirm it deviates significantly from linearity. I do the latter by fitting a second model where the same predictor is entered without the s(), and then use anova.gam to compare the
2003 Jun 03
3
gam questions
Dear all, I'm a fairly new R user having two questions regarding gam: 1. The prediction example on p. 38 in the mgcv manual. In order to get predictions based on the original data set, by leaving out the 'newdata' argument ("newd" in the example), I get an error message "Warning message: the condition has length > 1 and only the first element will be used in: if
2008 May 06
1
mgcv::gam shrinkage of smooths
In Dr. Wood's book on GAM, he suggests in section 4.1.6 that it might be useful to shrink a single smooth by adding S=S+epsilon*I to the penalty matrix S. The context was the need to be able to shrink the term to zero if appropriate. I'd like to do this in order to shrink the coefficients towards zero (irrespective of the penalty for "wiggliness") - but not necessarily all the
2003 Jun 04
2
gam()
Dear all, I've now spent a couple of days trying to learn R and, in particular, the gam() function, and I now have a few questions and reflections regarding the latter. Maybe these things are implemented in some way that I'm not yet aware of or have perhaps been decided by the R community to not be what's wanted. Of course, my lack of complete theoretical understanding of what
2005 Sep 26
4
p-level in packages mgcv and gam
Hi, I am fairly new to GAM and started using package mgcv. I like the fact that optimal smoothing is automatically used (i.e. df are not determined a priori but calculated by the gam procedure). But the mgcv manual warns that p-level for the smooth can be underestimated when df are estimated by the model. Most of the time my p-levels are so small that even doubling them would not result
2006 Jan 19
2
gam
Dear R users, I'm new to both R and to this list and would like to get advice on how to build generalized additive models in R. Based on the description of gam, which I found on the R website, I specified the following model: model1<-gam(ST~s(MOWST1),family=binomial,data=strikes.S), in which ST is my binary response variable and MOWST1 is a categorical independent variable. I get the
2009 Jul 28
2
A hiccup when using anova on gam() fits.
I stumbled across a mild glitch when trying to compare the result of gam() fitting with the result of lm() fitting. The following code demonstrates the problem: library(gam) x <- rep(1:10,10) set.seed(42) y <- rnorm(100) fit1 <- lm(y~x) fit2 <- gam(y~lo(x)) fit3 <- lm(y~factor(x)) print(anova(fit1,fit2)) # No worries. print(anova(fit1,fit3)) # Likewise. print(anova(fit2,fit3)) #
2004 Sep 27
2
passing formula arg to mgcv::gam
Hi, I have a function, callGam, that fits a gam model to a subset of a dataframe. The argument to callGam is a formula, the subset is determined inside the function itself. My na??ve approach generates and error, see below. I guess this is because 'idx' is loocked up in the environment of 'formula', but I am too ignorant about environments to be able to tell for sure. Could
2012 Jul 30
2
mgcv 1.7-19, vis.gam(): "invalid 'z' limits'
Hi everyone, I ran a binomial GAM consisting of a tensor product of two continuous variables, a continuous parametric term and crossed random intercepts on a data set with 13,042 rows. When trying to plot the tensor product with vis.gam(), I get the following error message: Error in persp.default(m1, m2, z, col = col, zlim = c(min.z, max.z), xlab = view[1], : invalid 'z' limits In
2012 Aug 14
1
Random effects in gam (mgcv 1.7-19)
Hi, I am using the gam function in the mgcv package, I have random effects in my model (bs="re") this has worked fine, but after I updated the mgcv package to version 1.7-19 I recive an error message when I run the model. > fit1<-gam(IV~s(RUTE,bs="re")+s(T13)+s(H40)+factor(AAR)+s(V3)+s(G1)+s(H1)+s(V1)+factor(LEDD),data=data5,method="ML") > summary.gam(fit1)
2002 Nov 13
2
Comparing GAM objects using ANOVA
Hi, Is it possible to compare two GAM objects created with the gam() function from the mgcv package. I use a slightly modified version of anova.glm() named anova.gam(), modified from John Fox (2002). It often gives me some aberant responses, especially with "F" test. I use a quasibinomial model and scale (dispersion) is calculated and used in the calculation of the F value. Does someone
2012 Jul 23
1
mgcv: Extract random effects from gam model
Hi everyone, I can't figure out how to extract by-factor random effect adjustments from a gam model (mgcv package). Example (from ?gam.vcomp): library(mgcv) set.seed(3) dat <- gamSim(1,n=400,dist="normal",scale=2) a <- factor(sample(1:10,400,replace=TRUE)) b <- factor(sample(1:7,400,replace=TRUE)) Xa <- model.matrix(~a-1) ## random main effects Xb <-
2005 Jan 13
2
GAM: Remedial measures
I fitted a GAM model with Poisson distribution to a data with about 200 observations. I noticed that the plot of the residuals versus fitted values show a trend. Residuals tend to be lower for higher fitted values. Because, I'm dealing with count data, I'm thinking that this might be due to overdispersion. Is there a way to account for overdispersion in any of the packages MGCV or GAM?