Displaying 20 results from an estimated 4000 matches similar to: "defining "id" argument in geeglm"
2011 Apr 07
1
Quasipoisson with geeglm
Dear all,
I am trying to use the GEE methodology to fit a trend for the number of butterflies observed at several sites. In total, there are 66 sites, and 19 years for which observations might be available. However, only 326 observations are available (instead of 1254). For the time being, I ignore the large number of missing values, and the fact that GEE is only valid under MCAR. When I run the
2009 Feb 09
1
gee with auto-regressive correlation structure (AR-M)
Dear all,
I need to fit a gee model with an auto-regressive correlation structure and I faced some problems.
I attach a simple example:
#######################################################
library(gee)
library(geepack)
# I SIMULATE DATA FROM POISSON DISTRIBUTION, 10 OBS FOR EACH OF 50 GROUPS
set.seed(1)
y <- rpois(500,50)
x <- rnorm(500)
id <- rep(1:50,each=10)
# EXAMPLES FOR
2010 Apr 29
1
Generalized Estimating Equation (GEE): Why is Link = Identity?
Hi,
I'm running GEE using geepack.
I set corstr = "ar1" as below:
> m.ar <- geeglm(L ~ O + A,
+ data = firstgrouptxt, id = id,
+ family = binomial, corstr = "ar1")
> summary(m.ar)
Call:
geeglm(formula = L ~ O + A, family = binomial,
data = firstgrouptxt, id = id, corstr = "ar1")
Coefficients:
2010 Nov 29
2
how to calculate standard error for the predicted value from geeglm?
Hello R-helpers,
I would like to calculate the standard error for the predicted value
from geeglm.
As an example, I would like to calculate the GEE mean of treatments and
their standard error. I first specified the model as
mod <- geeglm(resp ~ trt,
data=dat,id=id,family=Gaussian,corstr="ar1",weights=weight)
Then I predicted the GEE mean and se using the following code
2010 Feb 10
1
using step() with package geepack
I'm using the package geepack to fit GEE models.
Does anyone know of methods for add1 and drop1 for a 'geeglm' model object, or perhaps a method for extractAIC based on the QIC of Pan 2001? I see there has been some mention of this on R-help a few years ago (RSiteSearch("QIC")).
The package does provide an anova method for its model objects, and update() seems to work:
2011 Jul 18
1
Missing values and geeglm
Dear all
I am struggling with how to deal with missing values using geeglm. I know
that geeglm only works with complete datasets, but I cannot seem to get the
na.omit function to work. For example
assuming DataMiss contains 3 columns, each of which has missing
observations, and an id column with no missing info then identifies the
clusters.
Outcome: 2 level integer
Predictor: numeric variable
2010 Jun 08
1
GEE: estimate of predictor with high time dependency
Hi,
I'm analyzing my data using GEE, which looks like below:
> interact <- geeglm(L ~ O + A + O:A,
+ data = data1, id = id,
+ family = binomial, corstr = "ar1")
> summary(interact)
Call:
geeglm(formula = lateral ~ ontask + attachment + ontask:attachment,
family = binomial, data = firstgroupnowalking, id = id, corstr = "ar1")
Coefficients:
2009 Apr 22
1
Gee with nested desgin
Dear all,
Is it possible to incorporate a nested design in GEE? I have
measurements on trees that where measured in two years. The trees are
nested in plots. Each plot contains 24 trees. The number of plots is 72.
Hence we would expect 2 * 24 * 72 = 3456 data points. A few are missing,
so we end up wih 3431 data points.
This is what I have tried until now.
#assuming independence between trees
2007 Sep 05
1
Running geeglm unstructured corstr
? stato filtrato un testo allegato il cui set di caratteri non era
indicato...
Nome: non disponibile
Url: https://stat.ethz.ch/pipermail/r-help/attachments/20070905/6d1002c1/attachment.pl
2009 Nov 26
1
different fits for geese and geeglm in geepack?
An embedded and charset-unspecified text was scrubbed...
Name: not available
URL: <https://stat.ethz.ch/pipermail/r-help/attachments/20091126/7134fc17/attachment-0001.pl>
2007 Jul 20
1
GEE code
I'm writing a paper aimed at motivating the use of GEE within the field of
economics. However, after computing using the geeglm function, I noticed
there's one intercept in the summary output. I assume this means the
function is pooling the data. That means my code is not what I want. I
want a "fixed effects" model, meaning I want the intercept to vary by
cluster. Here's
2011 Jan 31
1
GEE - order of data?
Dear all,
I am trying to do a GEE on count data and I am having problems with
how to order the data. Below is a simplified example of what my data
looks like..
Route Time Day Pass Distance
1 30 1 4 0
1 60 1 12 200
1 120 1 25 600
1 30 2 8 0
1 60 2 17 200
1
2008 Sep 07
1
an error to call 'gee' function in R
Dear List:
I found an error when I called the 'gee' function. I cannot solve and explain it. There are no errors when I used the 'geeglm' function. Both functions fit the gee model. The project supervisor recommends me to use the 'gee' function. But I cannot explain to him why this error happens. Would you help me solve this problem? I appreciate your help.
In
2003 Oct 24
1
gee and geepack: different results?
Hi, I downloaded both gee and geepack, and I am trying to understand the
differences between the two libraries.
I used the same data and estimated the same model, with a correlation
structure autoregressive of order 1. Surprisingly for me, I found very
different results. Coefficients are slightly different in value but
sometimes opposite in sign.
Moreover, the estimate of rho (correlation
2011 Mar 23
0
p and wald values intra-groups geeglm: geepack
*H*i,
I am trying to fit a GEE model with *geeglm* function. The model is the
following:
Modelo<-geeglm(sqrt ~Tra+ Mes, id=Lugar , data=datos,
family=gaussian(identity), corstr="independence")
*Tra( is a experimental treatment, 2 levels)*, *Mes* (is the month of take
data, 4 levels) and *Lugar* (is the site of study, 3 levels) are categorical
variables and *sqrt* (sqrt of Total
2009 Dec 08
0
Difference in S.E. gee/yags and geeglm(/geese)
Hi
A quick question. Standard errors reported by gee/yags differs from the ones in
geeglm (geepack).
require(gee)
require(geepack)
require(yags)
mm <- gee(breaks ~ tension, id=wool, data=warpbreaks,
corstr="exchangeable")
mm2 <- geeglm(breaks ~ tension, id=wool, data=warpbreaks,
corstr="exchangeable", std.err = "san.se")
mm3 <- yags(breaks ~
2010 Jun 22
1
Generalised Estimating Equations on approx normal outcome with limited range
Dear R users
I am analysing data from a group of twins and their siblings. The measures
that we are interested in are all correlated within families, with the
correlations being stronger between twins than between non-twin siblings.
The measures are all calculated from survey answers and by definition have
limited ranges (e.g. -5 to +5), though within the range they are
approximately normally
2011 Oct 17
1
Plotting GEE confidence bands using "predict"
Hello Fellow R
Users,I have
spent the last week trying to find a work around to this problem and I can't
seem to solve it. I simply want to plot my GEE model result with 95% confidence
bands.
I am using the geepack package to run a basic GEE model involving
nestling weights, to a Gaussian distribution, with "exchangeable" error
structure. I am examining how nestling weight varies
2013 Jan 06
4
random effects model
Hi A.K
Regarding my question on comparing normal/ obese/overweight with blood
pressure change, I did finally as per the first suggestion of stacking the
data and creating a normal category . This only gives me a obese not obese
14, but when I did with the wide format hoping to get a
obese14,normal14,overweight 14 Vs hibp 21, i could not complete any of the
models.
This time I classified obese=1
2012 May 04
0
Converting code from gee() to geeglm()
Dear R users
Recently I received advice from this fine group on gee() and sample weights
One suggestion was to use geeglm()
I hope someone can help me to solve a problem that arises when converting a
code from gee to geeglm.
*Here is a code that I wrote with the original data, not weighted: *
> m1 <- gee( Bin ~ educ+agemean+ residencysize + yearx , id = rad09 ,
data = Males,