similar to: Competing risk regression with CRR slow on large datasets?

Displaying 20 results from an estimated 10000 matches similar to: "Competing risk regression with CRR slow on large datasets?"

2008 Aug 22
0
Re : Help on competing risk package cmprsk with time dependent covariate
Hello again, I m trying to use timereg package as you suggested (R2.7.1 on XP Pro). here is my script based on the example from timereg for a fine & gray model in which relt = time to event, rels = status 0/1/2 2=competing, 1=event of interest, 0=censored random = covariate I want to test library(timereg) rel<-read.csv("relapse2.csv", header = TRUE, sep = ",",
2009 Aug 02
1
Competing Risks Regression with qualitative predictor with more than 2 categories
Hello, I have a question regarding competing risk regression using cmprsk package (function crr()). I am using R2.9.1. How can I do to assess the effect of qualitative predictor (gg) with more than two categories (a,b,c) categorie c is the reference category. See above results, gg is considered like a ordered predictor ! Thank you for your help Jan > # simulated data to test > set.seed(10)
2008 Aug 22
1
Help on competing risk package cmprsk with time dependent covariate
Dear R users, I d like to assess the effect of "treatment" covariate on a disease relapse risk with the package cmprsk. However, the effect of this covariate on survival is time-dependent (assessed with cox.zph): no significant effect during the first year of follow-up, then after 1 year a favorable effect is observed on survival (step function might be the correct way to say that ?).
2008 Mar 27
0
competing risks regression
Dear R users, I used crr function in R package 'cmprsk' to fit a competing risks model. There were no any error or warning messages during running the function, but the output was obvious not correct. I saved the model fit as an object called f.crr. I extracted bfitj from the object by doing f.crr$bfitj, and found values of bfitj were extremely large (around 1e+138). I tried all
2009 Mar 25
2
Competing risks Kalbfleisch & Prentice method
Dear R users I would like to calculate the Cumulative incidence for an event adjusting for competing risks and adjusting for covariates. One way to do this in R is to use the cmprsk package, function crr. This uses the Fine & Gray regression model. However, a simpler and more classical approach would be to implement the Kalbfleisch & Prentice method (1980, p 169), where one fits cause
2007 Jul 05
0
speed up crr function in cmprsk package
I am trying to use the crr function in the cmprsk package to analyze a large patient dataset (45000 +), The model has 100 + covariates and 5 competing risks. I am finding that R seems to get bogged down and even if I let it run for several hours I don't get anything back. Am I expecting too much, or are there ways to speed up the process? Any help is appreciated. Best, Spencer
2009 Oct 27
1
Error in solve.default peforming Competing risk regression
Dear all, I am trying to use the crr function in the cmprsk package version 2.2 to analyse 198 observations.I have receive the error in solve.default. Can anyone give me some insights into where the problem is? Thanks here is my script : cov=cbind(x1,x2) z<-crr(ftime,fstatus,cov)) and data file: x1 x2 fstatus ftime 0 .02 1 263 0 .03 1 113 0 .03 1 523
2008 Jul 27
0
competing risk model with time dependent covariates under R or Splus
This message was also sent to the MEDSTATS mailing list, so here is the reply I posted to that: Philippe, The machinery to use is to split follow-up time so finely that you can safely assume that rates are constant in each interval, and then just stuff it all into a Poisson model. This allows you to use any kind of time-dependent variables as well as accommodating competing risks. In the Epi
2009 Feb 27
2
Competing risks adjusted for covariates
Dear R-users Has anybody implemented a function/package that will compute an individual's risk of an event in the presence of competing risks, adjusted for the individual's covariates? The only thing that seems to come close is the cuminc function from cmprsk package, but I would like to adjust for more than one covariate (it allows you to stratify by a single grouping vector). Any
2005 Sep 09
0
strata in crr (cmprsk library)
Hi all, I am aware that crr lacks the "friendly" command structure of functions such as cph. All is clear to me about including covariates until I want to include a stratification term in the competing risk framework (no nice strat command). I am still a bit of a novice in R - I am looking for an example to help me with this, but can't seem to find one. Any advice appreciated (no
2013 Oct 18
1
crr question‏ in library(cmprsk)
Hi all I do not understand why I am getting the following error message. Can anybody help me with this? Thanks in advance. install.packages("cmprsk") library(cmprsk) result1 <-crr(ftime, fstatus, cov1, failcode=1, cencode=0 ) one.pout1 = predict(result1,cov1,X=cbind(1,one.z1,one.z2)) predict.crr(result1,cov1,X=cbind(1,one.z1,one.z2)) Error: could not find function
2009 Jun 25
2
crr - computationally singular
Dear R-help, I'm very sorry to ask 2 questions in a week. I am using the package 'crr' and it does exactly what I need it to when I use the dataset a. However, when I use dataset b I get the following error message: Error in drop(.Call("La_dgesv", a, as.matrix(b), tol, PACKAGE = "base")) : system is computationally singular: reciprocal condition number =
2008 Jul 26
0
competing risk model with time dependent covariates
Dear R users, is there a way, I mean a package, to perform a competing risk model which can handle time dependent covariates ? my main covariate (additional treatment to patients) appears not to follow the proportional hazards assumption, its effect being observed after one year of treatment but not before (this is expected / makes sense on a clinical point of view). SO I was planning to use a
2009 Jun 23
0
Fractional Polynomials in Competing Risks setting
Dear All, I have analysed time to event data for continuous variables by considering the multivariable fractional polynomial (MFP) model and comparing this to the untransformed and log transformed model to determine which transformation, if any, is best. This was possible as the Cox model was the underlying model. However, I am now at the situation where the assumption that the competing risks
2011 Sep 05
1
SAS code in R
Dear all, I was wondering if anyone can help? I am an R user but recently I have resorted to SAS to calculate the probability of the event (and the associated confidence interval) for the Cox model with combinations of risk factors. For example, suppose I have a Cox model with two binary variables, one for gender and one for treatment, I wish to calculate the probability of survival for the
2015 May 16
1
That 'make check-all' problem with the survival package
'make check-all' for current R has been showing this error in the middle for a few months now - any thought on fixing this? I think cmprsk should be either included in the recommended bundle, or the survival vignette to not depend on it. Having 'make check-all' showing glaring ERROR's for a few months seems to defeat the purpose of doing any checking at all via 'make
2006 Aug 17
1
putting the mark for censored time on 1-KM curve or competing risk curve
Hi All, I'm trying to figure out the cumulative incidence curve in R in some limited time. I found in package "cmprsk", the command "plot.cuminc" can get this curve. But I noticed that there is no mark for the censored time there, comparing with the KM curve by "plot.survfit". Here are my codes (attached is the data): ----------------
2015 May 16
2
That 'make check-all' problem with the survival package
------------------------------ On Sat, May 16, 2015 8:04 AM BST Uwe Ligges wrote: >Not sure why this goes to R-devel. You just could have asked the >maintainer. Terry Therneau is aware of it and promised he will fix it. > The quickest fix is to add cmprsk to the recommended list , and that's is an R-devel issue. >On 16.05.2015 07:22, Hin-Tak Leung wrote: >> 'make
2011 Jun 24
1
Competing-risks nomogram
Hi R users, I'd like to draw a nomogram using a competing-risks regression (crr function in R), rather than a cox regression. However, the nomogram function provided in the Design package is not good for this purpose. Do you have any suggestion. I really appreciate your help Many thanks F.Abdollah, MD San-Raffele hospital Milan, Italy -- View this message in context:
2007 Jul 03
0
Statistics Question not R question: competing risks and non-informative censoring
All, I am working with Emergency Department (ED) Length of Stay Data. The ED visit can end in one of a variety of ways (Admit, discharge, transfer, etc...) Initially, I have modeled the time to event by fitting a survival model to the time the outcome of interest and treat all other outcomes as censoring. However I recently came across the cmprsk package in R which seems to be developed