Displaying 20 results from an estimated 10000 matches similar to: "Calculating mean from wit mice (multiple imputation)"
2011 Oct 10
1
Multiple imputation on subgroups
Dear R-users,
I want to multiple impute missing scores, but only for a few subgroups in my
data (variable 'subgroups': only impute for subgroups 2 and 3).
Does anyone knows how to do this in MICE?
This is my script for the multiple imputation:
imp <- mice(data, m=20, predictorMatrix=pred, post=post,
method=c("", "", "", "",
2006 Sep 25
2
Multiple imputation using mice with "mean"
Hi
I am trying to impute missing values for my data.frame. As I intend to use the
complete data for prediction I am currently measuring the success of an
imputation method by its resulting classification error in my training data.
I have tried several approaches to replace missing values:
- mean/median substitution
- substitution by a value selected from the observed values of a variable
- MLE
2009 Apr 24
1
Multiple Imputation in mice/norm
I'm trying to use either mice or norm to perform multiple imputation to fill
in some missing values in my data. The data has some missing values because
of a chemical detection limit (so they are left censored). I'd like to use
MI because I have several variables that are highly correlated. In SAS's
proc MI, there is an option with which you can limit the imputed values that
are
2012 Dec 08
1
imputation in mice
Hello! If I understand this listserve correctly, I can email this address
to get help when I am struggling with code. If this is inaccurate, please
let me know, and I will unsubscribe.
I have been struggling with the same error message for a while, and I can't
seem to get past it.
Here is the issue:
I am using a data set that uses -1:-9 to indicate various kinds of missing
data. I changed
2011 Dec 09
2
Help with the Mice Function
Hi,
I am attempting to impute my data for missing values using the mice
function. However everytime I run the function it freezes or lags.
I have tried running it over night, and it still does not finish. I am
working with 17000 observations across 32 variables.
here is my code:
imputed.data = mice(data,
+ m = 1, + diagnostics = F)
Thank you in advance,
Richard
[[alternative HTML version
2011 Aug 01
1
Impact of multiple imputation on correlations
Dear all,
I have been attempting to use multiple imputation (MI) to handle missing data in my study. I use the mice package in R for this. The deeper I get into this process, the more I realize I first need to understand some basic concepts which I hope you can help me with.
For example, let us consider two arbitrary variables in my study that have the following missingness pattern:
Variable 1
2012 Mar 30
3
pooling in MICE
Hi everyone,
Does anyone here has experience using MICE to impute missing value? I am
having problem to pool the imputed dataset for a MANOVA test, could you
give me some advice please?
Here is my code:
> library(mice)
>
2013 Feb 14
2
Plotting survival curves after multiple imputation
I am working with some survival data with missing values.
I am using the mice package to do multiple imputation.
I have found code in this thread which handles pooling of the MI results:
https://stat.ethz.ch/pipermail/r-help/2007-May/132180.html
Now I would like to plot a survival curve using the pooled results.
Here is a reproducible example:
require(survival)
require(mice)
set.seed(2)
dt
2011 Jul 25
0
Debugging multiple imputation in mice
Hello all,
I am trying to impute some missing data using the mice package. The data
set I am working with contains 125 variables (190 observations),
involving both categorical and continuous data. Some of these variables
are missing up to 30% of their data.
I am running into a peculiar problem which is illustrated by the
following example showing both the original data (blue) and the imputed
2008 Nov 26
1
multiple imputation with fit.mult.impute in Hmisc - how to replace NA with imputed value?
I am doing multiple imputation with Hmisc, and
can't figure out how to replace the NA values with
the imputed values.
Here's a general ourline of the process:
> set.seed(23)
> library("mice")
> library("Hmisc")
> library("Design")
> d <- read.table("DailyDataRaw_01.txt",header=T)
> length(d);length(d[,1])
[1] 43
[1] 2666
2006 Mar 01
1
mice library / survival analysis
Hello folks,
I am a relatively new user of R and created multiply imputed data sets
with the 'mice' library. This library provides two functions for
complete-data analysis on multiply imputed data set objects (lm.mids and
glm.mids). I am trying to estimate a series of Cox PH regression models
and cannot figure out the best way to do this. Is it possible with the
mitools library?
2012 Jun 03
1
Multiple imputation, multinomial response & random effects
Dear R-group,
Could somebody recommend a package that can deal with a multinomial response variable (choice of breeding tactic in mice, which has four unordered levels), multiply-imputed data (generated using the Amelia package) and two non-nested random effects: individual identity (133 individuals made up to four choices each) and year (for which there are six levels and sample size varies
2006 Dec 08
1
Multiple Imputation / Non Parametric Models / Combining Results
Dear R-Users,
The following question is more of general nature than a merely technical
one. Nevertheless I hope someone get me some answers.
I have been using the mice package to perform the multiple imputations. So
far, everything works fine with the standard regressions analysis.
However, I am wondering, if it is theoretically correct to perform
nonparametric models (GAM, spline
2008 Jun 30
3
Is there a good package for multiple imputation of missing values in R?
I'm looking for a package that has a start-of-the-art method of
imputation of missing values in a data frame with both continuous and
factor columns.
I've found transcan() in 'Hmisc', which appears to be possibly suited
to my needs, but I haven't been able to figure out how to get a new
data frame with the imputed values replaced (I don't have Herrell's book).
Any
2007 May 17
1
MICE for Cox model
R-helpers:
I have a dataset that has 168 subjects and 12 variables. Some of the
variables have missing data and I want to use the multiple imputation
capabilities of the "mice" package to address the missing data. Given
that mice only supports linear models and generalized linear models (via
the lm.mids and glm.mids functions) and that I need to fit Cox models, I
followed the previous
2011 Feb 07
1
multiple imputation manually
Hi,
I want to impute the missing values in my data set multiple times, and then
combine the results (like multiple imputation, but manually) to get a mean
of the parameter(s) from the multiple imputations. Does anyone know how to
do this?
I have the following script:
y1 <- rnorm(20,0,3)
y2 <- rnorm(20,3,3)
y3 <- rnorm(20,3,3)
y4 <- rnorm(20,6,3)
y <- c(y1,y2,y3,y4)
x1 <-
2008 Nov 04
2
ordered logistic regression of survey data with missing variables
Hello:
I am working with a stratified survey dataset with sampling weights
and I want to use multiple imputation to help with missingness.
1. Is there a way to run an ordered logistic regression using both a
multiply imputed dataset (i.e. from mice) and adjust for the survey
characteristics using the weight variable? The Zelig package is able
to do binary logistic regressions for survey
2012 Mar 07
0
Multiple imputation using mice
Dear all,
I am trying to impute data for a range of variables in my data set, of which
unfortunately most variables have missing values, and some have quite a few.
So I set up the predictor matrix to exclude certain variables (setting the
relevant elements to zero) and then I run the imputation. This works fine if
I use predictive mean matching for the continous variables in the data set.
When I
2010 Sep 23
1
How to pass a model formula as argument to with.mids
Hello
I would like to pass a model formula as an argument to the with.mids
function from the mice package. The with.mids functon fits models to
multiply imputed data sets.
Here's a simple example
library(mice)
#Create multiple imputations on the nhanes data contained in the mice
package.
imp <- mice(nahnes)
#Fitting a linear model with each imputed data set the regular way works
2012 Jul 21
2
EM for missing data
Hi list,
I am wondering if there is a way to use EM algorithm to handle missing data and get a completed data set in R?
I usually do it in SPSS because EM in SPSS kind of "fill in" the estimated value for the missing data, and then the completed dataset can be saved and used for further analysis. But I have not found a way to get the a completed data set like this in R or SAS. With