Displaying 20 results from an estimated 3000 matches similar to: "prcomp & eigenvectors ... ??"
2013 Mar 14
2
Same eigenvalues but different eigenvectors using 'prcomp' and 'principal' commands
Dear all,
I've used the 'prcomp' command to
calculate the eigenvalues and eigenvectors of a matrix(gg).
Using the command 'principal' from the
'psych' packageĀ I've performed the same exercise. I got the same
eigenvalues but different eigenvectors. Is there any reason for that
difference?
Below are the steps I've followed:
1. PRCOMP
#defining the matrix
2010 Nov 10
2
prcomp function
Hello,
I have a short question about the prcomp function. First I cite the
associated help page (help(prcomp)):
"Value:
...
SDEV the standard deviations of the principal components (i.e., the square
roots of the eigenvalues of the covariance/correlation matrix, though the
calculation is actually done with the singular values of the data matrix).
ROTATION the matrix of variable loadings
2009 Jan 19
3
bootstrapped eigenvector method following prcomp
G'Day R users!
Following an ordination using prcomp, I'd like to test which variables
singnificantly contribute to a principal component. There is a method
suggested by Peres-Neto and al. 2003. Ecology 84:2347-2363 called
"bootstrapped eigenvector". It was asked for that in this forum in
January 2005 by J?r?me Lema?tre:
"1) Resample 1000 times with replacement entire
2004 Nov 03
2
Princomp(), prcomp() and loadings()
In comparing the results of princomp and prcomp I find:
1. The reported standard deviations are similar but about 1% from
each other, which seems well above round-off error.
2. princomp returns what I understand are variances and cumulative
variances accounted for by each principal component which are
all equal. "SS loadings" is always 1.
3. Same happens
2010 Jun 15
1
Getting the eigenvectors for the dependent variables from principal components analysis
Dear listserv,
I am trying to perform a principal components analysis and create an output table of the eigenvalues for the dependent variables. What I want is to see which variables are driving each principal components axis, so I can make statements like, "PC1 mostly refers to seed size" or something like that.
For instance, if I try the example from ?prcomp
> prcomp(USArrests,
2008 Sep 09
4
PCA and % variance explained
After doing a PCA using princomp, how do you view how much each component
contributes to variance in the dataset. I'm still quite new to the theory of
PCA - I have a little idea about eigenvectors and eigenvalues (these
determine the variance explained?). Are the eigenvalues related to loadings
in R?
Thanks,
Paul
--
View this message in context:
2009 Mar 08
2
prcomp(X,center=F) ??
I do not understand, from a PCA point of view, the option center=F
of prcomp()
According to the help page, the calculation in prcomp() "is done by a
singular value decomposition of the (centered and possibly scaled) data
matrix, not by using eigen on the covariance matrix" (as it's done by
princomp()) .
"This is generally the preferred method for numerical accuracy"
2004 Jun 22
0
prcomp & eigenvectors
I have the following situation I want to analyse with prcomp.
Each subject has a curve called the contrast sensitivity function (CSF).
This curve's overall shape is due to the additive output of 3 "channels"
(eigenvectors).
#this shows 3 SF channels; net CSF = c1 + c2+c3
x<-1:100
c1<-dnorm(x,mean=20,sd=20)
c2<-dnorm(x,mean=50,sd=20)
c3<-dnorm(x,mean=80,sd=20)
2013 Oct 03
1
prcomp - surprising structure
Hello,
I did a pca with over 200000 snps for 340 observations (ids). If I plot the
eigenvectors (called rotation in prcomp) 2,3 and 4 (e.g. plot
(rotation[,2]) I see a strange "column" in my data (see attachment). I
suggest it is an artefact (but of what?).
Suggestion:
I used prcomp this way: prcomp (mat), where mat is a matrix with the column
means already substracted followed by a
2005 Mar 31
1
loadings or summary in Principal components
May be a simple question, but not understanding why in princomp I get different results for loadings and summary for my eigenvectors and eigenvalues.
When I use pc.cr$loadings using the USArrests dataset the proportion of variance is equal for each of the components, but when summary(pc.cr) is used the proportion of variance is showing different proportions. My question is why do they differ? I
2002 Nov 05
2
eigenvectors order
Hi,
How the eigenvectors output by the eigen() function are ordered. The
first column corresponds to the largest eigenvalue? or is the last
column as in Octave?
I'm performing a spatial-temporal analysis of some climatic variables
so my matrices are MxN (locations*time)and I'm looking for the leading
EOF's. As I have understand the eigenvectors columns represent those
EOF's
2011 Nov 14
2
How to compute eigenvectors and eigenvalues?
Hello.
Consider the following matrix:
mp <- matrix(c(0,1/4,1/4,3/4,0,1/4,1/4,3/4,1/2),3,3,byrow=T)
> mp
[,1] [,2] [,3]
[1,] 0.00 0.25 0.25
[2,] 0.75 0.00 0.25
[3,] 0.25 0.75 0.50
The eigenvectors of the previous matrix are 1, 0.25 and 0.25 and it is not a diagonalizable matrix.
When you try to find the eigenvalues and eigenvectors with R, R responses:
> eigen(mp)
$values
[1]
2010 Jan 11
3
Eigenvectors and values in R and SAS
Hi,
I was wondering if function eigen() does something different from the
function call eigen() in SAS.
I'm in the process of translating a SAS code into a R code and the values of
the eigenvectors and eigenvalues of a square matrix came out to be different
from the values in SAS.
I would also appreciate it if someone can explain the difference in simple
terms. I'm pretty new to both
2003 Nov 04
2
real eigenvectors
Hello list,
Sorry, these questions are not directly linked to R.
If I consider an indefinte real matrix, I would like to know if the
symmetry of the matrix is sufficient to say that their eigenvectors are real ?
And what is the conditions to ensure that eigenvectors are real in the case
of an asymmetric matrix (if some conditions exist)?
Thanks in Advance,
St?phane DRAY
2003 Apr 03
2
Matrix eigenvectors in R and MatLab
Dear R-listers
Is there anyone who knows why I get different eigenvectors when I run
MatLab and R? I run both programs in Windows Me. Can I make R to produce
the same vectors as MatLab?
#R Matrix
PA9900<-c(11/24 ,10/53 ,0/1 ,0/1 ,29/43 ,1/24 ,27/53 ,0/1 ,0/1 ,13/43
,14/24 ,178/53 ,146/244 ,17/23 ,15/43 ,2/24 ,4/53 ,0/1 ,2/23 ,2/43 ,4/24
,58/53 ,26/244 ,0/1 ,5/43)
#R-syntax
2011 Apr 09
2
Orthoblique rotation on eigenvectors (SAS VARCLUS)
Hi All,
I'd like to build a package for the community that replicates the output
produced by SAS "proc varclus". According to the SAS documentation, the
first few steps are:
1. Find the first two principal components.
2. Perform an orthoblique rotation (quartimax rotation) on eigenvectors.
3. Assign each variable to the rotated component with which it has the
higher
squared
2003 Jun 08
2
LDA: normalization of eigenvectors (see SPSS)
Hi dear R-users
I try to reproduce the steps included in a LDA. Concerning the eigenvectors there is
a difference to SPSS. In my textbook (Bortz)
it says, that the matrix with the eigenvectors
V
usually are not normalized to the length of 1, but in the way that the
following holds (SPSS does the same thing):
t(Vstar)%*%Derror%*%Vstar = I
where Vstar are the normalized eigenvectors. Derror
2005 Jan 29
1
Bootstrapped eigenvector
Hello alls,
I found in the literature a technique that has been evaluated as one of the
more robust to assess statistically the significance of the loadings in a
PCA: bootstrapping the eigenvector (Jackson, Ecology 1993, 74: 2204-2214;
Peres-Neto and al. 2003. Ecology 84:2347-2363). However, I'm not able to
transform by myself the following steps into a R program, yet?
Can someone could help
2009 Nov 25
1
which to trust...princomp() or prcomp() or neither?
According to R help:
princomp() uses eigenvalues of covariance data.
prcomp() uses the SVD method.
yet when I run the (eg., USArrests) data example and compare with my own
"hand-written" versions of PCA I get what looks like the opposite.
Example:
comparing the variances I see:
Using prcomp(USArrests)
-------------------------------------
Standard deviations:
[1] 83.732400 14.212402
2007 Feb 13
1
Questions about results from PCAproj for robust principal component analysis
Hi.
I have been looking at the PCAproj function in package pcaPP (R 2.4.1) for
robust principal components, and I'm trying to interpret the results. I
started with a data matrix of dimensions RxC (R is the number of rows /
observations, C the number of columns / variables). PCAproj returns a list
of class princomp, similar to the output of the function princomp. In a
case where I can