similar to: B %*% t(B) = R , then solve for B

Displaying 20 results from an estimated 2000 matches similar to: "B %*% t(B) = R , then solve for B"

2007 Oct 17
3
Observations on SVD linpack errors, and a workaround
Lately I'm getting this error quite a bit: Error in La.svd(x, nu, nv) : error code 1 from Lapack routine 'dgesdd' I'm running R 2.5.0 on a 64 bit Intel machine running Fedora (8 I think). Maybe the 64 bit platform is more fragile about declaring convergence. I'm seeing way more of these errors than I ever have before. From R-Help I see that this issue comes up from time to
2004 Jul 27
4
SVD with positivity constraints
Hello, I have a matrix equation, Ax=b, that I need to solve for x. x should be a vector of positive numbers (between 0 and 1). A is not a square matrix in general. This lead me to using the SVD. However, using the SVD gives me positive and negative numbers, as well. I have some constraints included in the A matrix itself (i.e., that the sum of some xi should be equal to 1) but I do not know how
2010 Jan 16
2
La.svd of a symmetric matrix
Dear R list users, the singluar value decomposition of a symmetric matrix M is UDV^(T), where U = V. La.svd(M) gives as output three elements: the diagonal of D and the two orthogonal matrices u and vt (which is already the transpose of v). I noticed that the transpose of vt is not exactly u. Why is that? thank you for your attention and your help Stefano AVVISO IMPORTANTE: Questo messaggio di
2003 Feb 06
6
Confused by SVD and Eigenvector Decomposition in PCA
Hey, All In principal component analysis (PCA), we want to know how many percentage the first principal component explain the total variances among the data. Assume the data matrix X is zero-meaned, and I used the following procedures: C = covriance(X) %% calculate the covariance matrix; [EVector,EValues]=eig(C) %% L = diag(EValues) %%L is a column vector with eigenvalues as the elements percent
2000 Aug 10
1
svd error (PR#631)
--=====================_24736660==_ Content-Type: text/plain; charset="iso-8859-1"; format=flowed Content-Transfer-Encoding: quoted-printable SVD-Error on R 1.1.0 Windows 98 I get the following error applying svd on a positive definite matrix : > sk2 [,1] [,2] [,3] [,4] [,5] [1,] 1.0460139783 0.084356992 -2.810553e-04
2001 Nov 16
2
DGESDD from Lapack for R-1.4.0?
Hi, I'm just wondering if it is planned to include the Lapack routine DGESDD (and friends) in R-1.4.0? This is faster (supposedly by a factor of ~6 for large matrices) than DGESVD which is currently (R-1.3.1) called by La.svd. And if it is not in the plans yet, is there a chance it could be? I've added it to my local version of R-1.3.1 and so far see a factor of 4 improvement over
2008 May 16
1
Dimensions of svd V matrix
Hi, I'm trying to do PCA on a n by p wide matrix (n < p), and I'd like to get more principal components than there are rows. However, svd() only returns a V matrix of with n columns (instead of p) unless the argument nv=p is set (prcomp calls svd without setting it). Moreover, the eigenvalues returned are always min(n, p) instead of p, even if nv is set: > x <-
2002 Nov 17
1
SVD for reducing dimensions
-----BEGIN PGP SIGNED MESSAGE----- Hash: SHA1 Hi all, this is probably simple and I'm just doing something stupid, sorry about that :-) I'm trying to convert words (strings of letters) into a fairly small dimensional space (say 10, but anything between about 5 and 50 would be ok), which I will call a feature vector. The the distance between two words represents the similarity of the
2013 Apr 08
3
SVD on very large data matrix
Dear All, I need to perform a SVD on a very large data matrix, of dimension ~ 500,000 x 1,000 , and I am looking for an efficient algorithm that can perform an approximate (partial) SVD to extract on the order of the top 50 right and left singular vectors. Would be very grateful for any advice on what R-packages are available to perform such a task, what the RAM requirement is, and indeed what
2002 Oct 29
5
error in Fields TPS function
Hello, I was wondering whether anyone out there knows of the solution to a problem that I'm having with the Fields package. I am getting the error message when I try and run the fields function tps (thin plate splines). Namely, for two different sets of variables, I get: > bout <- Tps( bvolcap, bdsm) Error in svd(tempM) : error 159 in dsvdc > wout <- Tps( wvolcap, wdsm)
2008 Apr 15
1
SVD of a variance matrix
Hello! I suppose this is more a matrix theory question than a question on R, but I will give it a try... I am using La.svd to compute the singular value decomposition (SVD) of a variance matrix, i.e., a symmetric nonnegative definite square matrix. Let S be my variance matrix, and S = U D V' be its SVD. In my numerical experiments I always got U = V. Is this necessarily the case? Or I might
2011 Sep 13
1
SVD Memory Issue
I am trying to perform Singular Value Decomposition (SVD) on a Term Document Matrix I created using the 'tm' package. Eventually I want to do a Latent Semantic Analysis (LSA). There are 5677 documents with 771 terms (the DTM is 771 x 5677). When I try to do the SVD, it runs out of memory. I am using a 12GB Dual core Machine with Windows XP and don't think I can increase the memory
2010 Sep 22
3
eigen and svd
Dear R-helpers, could anybody explain me briefly what is the difference between eigenvectors returned by 'eigen' and 'svd' functions and how they are related? Thanks in advance Ondrej Mikula
2001 Nov 02
1
Look, Watson! La.svd & ATLAS
Dear R-devel, I had attempted to compile r-devel (dated Oct. 31, 2001) on WinNT with link to ATLAS, with mostly success. However, when I tried the following, I got a visit from Dr. Watson: R : Copyright 2001, The R Development Core Team Version 1.4.0 Under development (unstable) (2001-10-31) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under
2012 Jul 09
3
Package 'MASS' (polr): Error in svd(X) : infinite or missing values in 'x'
Hello, I am trying to run an ordinal logistic regression (polr) using the package 'MASS'. I have successfully run other regression classes (glm, multinom) without much problem, but with the 'polr' class I get the following error: " Error in svd(X) : infinite or missing values in 'x' " which appears when I run the "summary" command. The data file is
2003 Jul 03
2
SVD and spectral decompositions of a hermitian matrix
Hi: I create a hermitian matrix and then perform its singular value decomposition. But when I put it back, I don't get the original hermitian matrix. I am having the same problem with spectral value decomposition as well. I am using R 1.7.0 on Windows. Here is my code: X <- matrix(rnorm(16)+1i*rnorm(16),4) X <- X + t(X) X[upper.tri(X)] <- Conj(X[upper.tri(X)]) Y <-
2004 Jan 15
2
prcomp scale error (PR#6433)
Full_Name: Ryszard Czerminski Version: 1.8.1 OS: GNU/Linux Submission from: (NULL) (205.181.102.120) prcomp(..., scale = TRUE) does not work correctly: $ uname -a Linux 2.4.20-28.9bigmem #1 SMP Thu Dec 18 13:27:33 EST 2003 i686 i686 i386 GNU/Linux $ gcc --version gcc (GCC) 3.2.2 20030222 (Red Hat Linux 3.2.2-5) > a <- matrix(rnorm(6), nrow = 3) > sum((scale(a %*% svd(cov(a))$u, scale
2005 Jan 27
2
svd error
Hi, I met a probem recently and need your help. I would really appreciate it. I kept receiving the following error message when running a program: 'Error in svd(X) : infinite or missing values in x'. However, I did not use any svd function in this program though I did include the function pseudoinverse. Is the problem caused by doing pseudoinverse? Best regards, Tongtong
2002 Apr 01
3
svd, La.svd (PR#1427)
(I tried to send this earlier, but it doesnt seem to have come through, due to problems on my system) Hola: Both cannot be correct: > m <- matrix(1:4, 2) > svd(m) $d [1] 5.4649857 0.3659662 $u [,1] [,2] [1,] -0.5760484 -0.8174156 [2,] -0.8174156 0.5760484 $v [,1] [,2] [1,] -0.4045536 0.9145143 [2,] -0.9145143 -0.4045536 > La.svd(m) $d [1]
2003 Apr 22
4
"LAPACK routine DGESDD gave error code -12" with Debian (PR#2822)
Dear All, Under Debian GNU/Linux La.svd (with method = "dgesdd") sometimes gives the error "Error in La.svd(data, nu = 0, nv = min(nrow, ncol), method = "dgesdd") : LAPACK routine DGESDD gave error code -12" It seems not to depend on the data per se, but on the relationship between numbers of rows and columns. For example, if the number of columns is 100,