Displaying 20 results from an estimated 600 matches similar to: "problem with predict(mboost,...)"
2009 Jan 22
4
dimnames in pkg "ipred"
Hello List,
I`m trying to make prediction using a bagged tree with the package ipred. I tried to follow the manual but I`m getting an error message. Also browsing through the list-archive I didn`t find any hint.
Maybe someone can help me?
selbag <- bagging(SOIL_UNIT ~., data=traindat.bin, coob=TRUE)
Error in dimnames(X) <- list(dn[[1L]], unlist(collabs, use.names = FALSE)) :
2009 Jan 07
1
Question about the RWEKA package
Dear List,
I´m trying to implement the functionalities from WEKA into my modeling project in R through the RWeka package.
In this context I have a slightly special question about the filters implemented in WEKA.
I want to convert nominal attributes with k values into k binary attributes through the NominalToBinary filter ("weka.filters.supervised.attribute.NominalToBinary"). But
2009 Jan 15
2
problems with extractPrediction in package caret
Hi list,
I´m working on a predictive modeling task using the caret package.
I found the best model parameters using the train() and trainControl() command. Now I want to evaluate my model and make predictions on a test dataset. I tried to follow the instructions in the manual and the vignettes but unfortunately I´m getting an error message I can`t figure out.
Here is my code:
rfControl <-
2010 Feb 02
0
Major update: mboost 2.0-0 released
Dear useRs,
we are happy to announce the release of mboost 2.0-0 on CRAN:
http://cran.r-project.org/package=mboost
This version contains major updates and changes to the implementation of
the main algorithm. Some slight changes to the user-interface where
necessary. Please consult the manual and the list of CHANGES below.
The package 'mboost' (Model-based Boosting) implements
2010 Feb 02
0
Major update: mboost 2.0-0 released
Dear useRs,
we are happy to announce the release of mboost 2.0-0 on CRAN:
http://cran.r-project.org/package=mboost
This version contains major updates and changes to the implementation of
the main algorithm. Some slight changes to the user-interface where
necessary. Please consult the manual and the list of CHANGES below.
The package 'mboost' (Model-based Boosting) implements
2012 Jul 23
1
mboost vs gbm
I'm attempting to fit boosted regression trees to a censored response using
IPCW weighting. I've implemented this through two libraries, mboost and
gbm, which I believe should yield models that would perform comparably.
This, however, is not the case - mboost performs much better. This seems
odd. This issue is meaningful since the output of this regression needs to
be implemented in a
2010 Feb 07
1
mboost: Interpreting coefficients from glmboost if center=TRUE
I'm running R 2.10.1 with mboost 2.0 in order to build predictive
models . I am performing prediction on a binomial outcome, using a
linear function (glmboost). However, I am running into some confusion
regarding centering. (I am not aware of an mboost-specific mailing
list, so if the main R list is not the right place for this topic,
please let me know.)
The boost_control() function allows
2010 Mar 19
0
mboost: Interpreting coefficients from glmboost if center=TRUE
Sorry for the tardy reply but I just found your posting incidentally
today. To make long things short:
You are right about the centering. We forgot to correct the intercept if
center = TRUE. We lately found the problem ourself and fixed it in the
current version (mboost 2.0-3). However the problem only occurred if you
extracted the coefficients. As the intercept is rarely interpretable we
2009 Apr 07
0
gbm for multi-class problems
Dear List,
I´m working on a classification problem. My response has 60 levels.
I`m very interested in boosted trees like AdaBoost or gradient boosting machine as implemented in the package "gbm". Unfortunately gbm is only applicable for 2-class problems.
Is anybody out there who can help me? Is there a way to use gbm() for multi-class problems? Maybe there is a way to transform my
2012 Nov 04
1
blackboost (mboost package) function leads to non-reclaimable memory usage
Dear all,
I am puzzled by R's memory usage when calling the blackboost function from
package mboost to estimate a Gradient boosting model on a simulated dataset
with 20 correlated variables and 100,000 obs. The blackboost object created
by the function is only 15.3Mb, but R's memory usage increases by about
3.9Gb during the estimation of the model and the memory is not released even
after
2008 Apr 26
2
Calling a stored model within the predict() function
Hi all,
First of all, I'm a novice R user (less that a week), so perhaps my code
isn't very efficient.
Using the MBoost package I created a model using the following command and
saved it to a file for later use:
model <- gamboost(fpfm,data=SampleClusterData,baselearner="bbs") # Creating
a model
save(model,file="model.RData") # Saving a model
After this, during a
2009 Dec 10
2
different randomForest performance for same data
Hello,
I came across a problem when building a randomForest model. Maybe someone can help me.
I have a training- and a testdataset with a discrete response and ten predictors (numeric and factor variables). The two datasets are similar in terms of number of predictor, name of variables and datatype of variables (factor, numeric) except that only one predictor has got 20 levels in the training
2010 May 31
4
correcting a few data in a large data frame
The data frame is lwf that records the survival of bushes over an 8 year
period. Years are called bouts. Dead bushes are recorded as zeros, and live
bushes as "1."
str(lwf)
'data.frame': 638 obs. of 9 variables:
$ bushno: int 1 2 3 4 5 6 7 8 9 10 ...
$ bout1 : int 0 1 0 1 1 1 0 1 0 1 ...
$ bout2 : int 0 1 0 0 0 0 0 0 0 1 ...
$ bout3 : int 0 1 0 0 0 0 0 0 0 1 ...
$
2008 Dec 08
2
Ubuntu 8.10: Package installation fails (lf77blas problem)
I just upgraded to Ubuntu 8.10 (i386) from 8.04. After the upgrade, I ran
update.packages(.libPaths()[1]) in R to get the packages installed from source
up to date too. Unfortunately, two packages could not be updated: mclust and
mboost. In both cases, the error I got mentioned lf77blas. Here's the output for
mboost:
* Installing *source* package 'mboost' ...
** libs
gcc -std=gnu99
2013 Jul 20
2
Different x-axis scales using c() in latticeExtra
Hi,
I would like to combine multiple xyplots into a single, multipanel
display. Using R 3.0.1 in Ubuntu, I have used c() from latticeExtra
to combine three plots, but the x-axis for two plots are on a log
scale and the other is on a normal scale. I also have included
equispace.log=FALSE to clean up the tick labels. However, when I try
all of these, the x-axis scale of the first panel is used
2010 Jul 28
2
Out-of-sample predictions with boosting model
Hi UseRs -
I am new to R, and could use some help making out-of-sample predictions
using a boosting model (the mboost command). The issue is complicated by the
fact that I have panel data (time by country), and am estimating the model
separately for each country. FYI, this is monthly data and I have 1986m1 -
2009m12 for 9 countries.
To give you a flavor of what I am doing, here is a simple
2007 Jun 27
1
"no applicable method"
I'm getting started in R, and I'm trying to use one of the gradient
boosting packages, mboost. I'm already installed the package with
install.packages("mboost") and loaded it with library(mboost).
My problem is that when I attempt to call glmboost, I get a message
that " Error in glmboost() : no applicable method for "glmboost" ".
Does anybody have
2010 Feb 03
0
mboost: how to implement cost-sensitive boosting family
mboost contains a blackboost method to build tree-based boosting models. I tried to write my own "cost-sensitive" ada family. But obviously my understanding to implement ngradient, loss, and offset functions is not right. I would greatly appreciate if anyone can help me out, or show me how to write a cost-sensitive family, thanks!
Follows are some families I wrote
ngradient <-
2009 Sep 26
1
mboost_1.1-3 blackboost_fit (PR#13972)
Full_Name: Ivan the Terrible
Version: 2.9.2
OS: Windows XP SP3
Submission from: (NULL) (89.110.13.151)
When using the method blackboost_fit of the package mboost appear following
error :
Error in party:::get_variables(obj at responses) :
trying to get slot "responses" from an object (class "boost_data") that is not
an S4 object
Simple test case that produce bug:
2005 Mar 10
2
Logistic regression goodness of fit tests
I was unsure of what suitable goodness-of-fit tests existed in R for logistic regression. After searching the R-help archive I found that using the Design models and resid, could be used to calculate this as follows:
d <- datadist(mydataframe)
options(datadist = 'd')
fit <- lrm(response ~ predictor1 + predictor2..., data=mydataframe, x =T, y=T)
resid(fit, 'gof').
I set up a