Displaying 20 results from an estimated 2000 matches similar to: "Fitting a regression model with with ARMA error"
2007 Mar 05
1
Heteroskedastic Time Series
Hi R-helpers,
I'm new to time series modelling, but my requirement seems to fall just
outside the capabilities of the arima function in R. I'd like to fit an
ARMA model where the variance of the disturbances is a function of some
exogenous variable. So something like:
Y_t = a_0 + a_1 * Y_(t-1) +...+ a_p * Y_(t-p) + b_1 * e_(t-1) +...+ b_q *
e_(t-q) + e_t,
where
e_t ~ N(0, sigma^2_t),
2008 Sep 10
2
arima and xreg
Dear R-help-archive..
I am trying to figure out how to make arima prediction when I have a
process involving multivariate time series input, and one output time
series (output is to be predicted) .. (thus strictly speaking its an
ARMAX process). I know that the arima function of R was not designed
to handle multivariate analysis (there is dse but it doesnt handle
arma multivariate analysis, only
2007 May 08
2
statistics/correlation question NOT R question
This is not an R question but if anyone can help me, it's much
appreciated.
Suppose I have a series ( stationary ) y_t and a series x_t ( stationary
)and x_t has variance sigma^2_x and epsilon is normal
(0, sigma^2_epsilon )
and the two series have the relation
y_t = Beta*x_t + epsilon
My question is if there are particular values that sigma^2_x and
sigma^2_epsilon have to take in
2009 Jun 19
1
using garchFit() to fit ARMA+GARCH model with exogeneous variables
Hello -
Here's what I'm trying to do. I want to fit a time series y with
ARMA(1,1) + GARCH(1,1), there are also an exogeneous variable x which I
wish to include, so the whole equation looks like:
y_t - \phi y_{t-1} = \sigma_t \epsilon_t + \theta \sigma_{t-1}
\epsilon_{t-1} + c x_t where \epsilon_t are i.i.d. random
variables
\sigma_t^2 = omega + \alpha \sigma_{t-1}^2 + \beta
2002 Apr 09
2
Restricted Least Squares
Hi,
I need help regarding estimating a linear model where restrictions are imposed on the coefficients. An example is as follows:
Y_{t+2}=a1Y_{t+1} + a2 Y_t + b x_t + e_t
restriction
a1+ a2 =1
Is there a function or a package that can estimate the coefficient of a model like this? I want to estimate the coefficients rather than test them.
Thank you for your help
Ahmad Abu Hammour
--------------
2006 May 19
0
how to estimate adding-regression GARCH Model
---------- Forwarded message ----------
From: ma yuchao <ma.yuchao@gmail.com>
Date: 2006-5-20 ÉÏÎç4:01
Subject: hello, everyone
To: R-help@stat.math.ethz.ch
Hello, R people:
I have a question in using fSeries package--the funciton garchFit and
garchOxFit
if adding a regression to the mean formula, how to estimate the model in
R? using garchFit or garchOxFit?
For example,
2013 May 02
2
ARMA with other regressor variables
Hi,
I want to fit the following model to my data:
Y_t= a+bY_(t-1)+cY_(t-2) + Z_t +Z_(t-1) + Z_(t-2) + X_t + M_t
i.e. it is an ARMA(2,2) with some additional regressors X and M.
[Z_t's are the white noise variables]
How do I find the estimates of the coefficients in R?
And also I would like to know what technique R employs to find the
estimates?
Any help is appreciated.
Thanks,
2013 Jan 03
2
simulation
Dear R users,
suppose we have a random walk such as:
v_t+1 = v_t + e_t+1
where e_t is a normal IID noise pocess with mean = m and standard deviation = sd and v_t is the fundamental value of a stock.
Now suppose I want a trading strategy to be:
x_t+1 = c(v_t – p_t)
where c is a costant.
I know, from the paper where this equations come from (Farmer and Joshi, The price dynamics of common
2005 Jun 01
2
Fitting ARMA model with known inputs.
Hello!
Is it possible to use R time series to identificate a process which is
subjected to known input? I.e. I have 2 sequences - one is measurements
of black box's state and the second is the "force" by which this black
box is driven (which is known too) and I want to fit thist two series
with AR-process. The "ar" procedure from stats package expects that the
force is
2013 May 02
1
warnings in ARMA with other regressor variables
Hi all,
I want to fit the following model to my data:
Y_t= a+bY_(t-1)+cY_(t-2) + Z_t +Z_(t-1) + Z_(t-2) + X_t + M_t
i.e. it is an ARMA(2,2) with some additional regressors X and M.
[Z_t's are the white noise variables]
So, I run the following code:
for (i in 1:rep) { index=sample(4,15,replace=T)
final<-do.call(rbind,lapply(index,function(i)
2006 Dec 06
1
Questions about regression with time-series
Hi,
I am using 2 times series and I want to carry out a regression of Seri1
by Serie2 using structured (autocorrelated) errors.
(Equivalent to the autoreg function in SAS)
I found the function gls (package nlme) and I made:
gls_mens<-gls(mening_s_des~dataATB, correlation = corAR1())
My problem is that I don’t want a AR(1) structure but ARMA(n,p) but the
execution fails :
2010 Aug 21
1
How to find residual in predict ARIMA
Dear All,
I have a model to predict time series data for example:
data(LakeHuron)
Lake.fit <- arima(LakeHuron,order=c(1,0,1))
then the function predict() can be used for predicting future data
with the model:
LakeH.pred <- predict(Lake.fit,n.ahead=5)
I can see the result LakeH.pred$pred and LakeH.pred$se but I did not
see residual in predict function.
If I have a model:
[\
Z_t =
2011 Dec 01
1
Estimation of AR(1) Model with Markov Switching
Dear R users,
I have been trying to obtain the MLE of the following model
state 0: y_t = 2 + 0.5 * y_{t-1} + e_t
state 1: y_t = 0.5 + 0.9 * y_{t-1} + e_t
where e_t ~ iidN(0,1)
transition probability between states is 0.2
I've generated some fake data and tried to estimate the parameters using the
constrOptim() function but I can't get sensible answers using it. I've tried
using
2010 Aug 23
2
Fitting VAR and doing Johansen's cointegration test in R
Hi,
Could someone please tell me the R codes for fitting VAR(p) (Vector
Auto Regressive) models and doing the Johansen?s cointegration tests.
TIA
Aditya
2009 Nov 02
1
AR Simulation with non-normal innovations - Correct
Dear Users,
I would like to simulate an AR(1) (y_t=ct1+y_t-1+e_t) model in R where the innovations are supposed to follow a t-GARCH(1,1) proccess.
By t-GARCH I want to mean that:
e_t=n_t*sqrt(h_t) and
h_t=ct2+a*(e_t)^2+b*h_t-1.
where n_t is a random variable with t-Student distribution.
If someone could give some guidelines, I can going developing the model.
I did it in matlab, but the loops
2005 Dec 09
1
R-help: gls with correlation=corARMA
Dear Madams/Sirs,
Hello. I am using the gls function to specify an arma correlation during
estimation in my model. The parameter values which I am sending the
corARMA function are from a previous fit using arima. I have had some
success with the method, however in other cases I get the following error
from gls: "All parameters must be less than 1 in absolute value". None
of
2006 Aug 14
1
ARMA(1,1) for panel data
Dear List,
I am new to TS-Modeling in R. I would like to fit an ARMA(1,1) model
for a balanced panel, running Y on a full set of unit and year dummies
using an arma(1,1) for the disturbance:
y_it=unit.dummies+yeardummies+e_it
where: e_it=d*e_it-1+u_it+q*u_it-1
How can I fit this model in R? arma() does not seem to take covariates
(or I don't understand how to specify the function so that
2006 Nov 06
1
question about function "gls" in library "nlme"
Hi:
The gls function I used in my code is the following
fm<-gls(y~x,correlation=corARMA(p=2) )
My question is how to extact the AR(2) parameters from "fm".
The object "fm" is the following. How can I extract the correlation parameters
Phi1 and Phi2 from "fm"? These two parametrs is not in the "coef" componenet of "fm".
Thanks a
2013 Feb 17
0
forecast ARMA(1,1)/GARCH(1,1) using fGarch library
Hi, i am working in the forecast of the daily price crude .
The last prices of this data are the following:
100.60 101.47 100.20 100.06 98.68 101.28 101.05 102.13 101.70 98.27
101.00 100.50 100.03 102.23 102.68 103.32 102.67 102.23 102.14 101.25
101.11 99.90 98.53 96.76 96.12 96.54 96.30 95.92 95.92 93.45
93.71 96.42 93.99 93.76 95.24 95.63 95.95 95.83 95.65
2010 Mar 11
1
VAR with contemporaneous effects
Hi,
I would like to estimate a VAR of the form:
Ay_t = By_t-1 + Cy_t-2 + ... + Dx_t + e_t
Where A is a non-diagonal matrix of coefficients, B and C are matricies of
coefficients and D is a matrix of coefficients for the exogenous variables.
I don't think the package {vars} can do this because I want to include
contemporaneous cross-variable impacts.
So I want y1_t to affect y2_t and I