similar to: How to find residual in predict ARIMA

Displaying 20 results from an estimated 500 matches similar to: "How to find residual in predict ARIMA"

2007 Mar 05
1
Heteroskedastic Time Series
Hi R-helpers, I'm new to time series modelling, but my requirement seems to fall just outside the capabilities of the arima function in R. I'd like to fit an ARMA model where the variance of the disturbances is a function of some exogenous variable. So something like: Y_t = a_0 + a_1 * Y_(t-1) +...+ a_p * Y_(t-p) + b_1 * e_(t-1) +...+ b_q * e_(t-q) + e_t, where e_t ~ N(0, sigma^2_t),
2013 Jan 03
2
simulation
Dear R users, suppose we have a random walk such as: v_t+1 = v_t + e_t+1 where e_t is a normal IID noise pocess with mean = m and standard deviation = sd and v_t is the fundamental value of a stock. Now suppose I want a trading strategy to be: x_t+1 = c(v_t – p_t) where c is a costant. I know, from the paper where this equations come from (Farmer and Joshi, The price dynamics of common
2011 Dec 01
1
Estimation of AR(1) Model with Markov Switching
Dear R users, I have been trying to obtain the MLE of the following model state 0: y_t = 2 + 0.5 * y_{t-1} + e_t state 1: y_t = 0.5 + 0.9 * y_{t-1} + e_t where e_t ~ iidN(0,1) transition probability between states is 0.2 I've generated some fake data and tried to estimate the parameters using the constrOptim() function but I can't get sensible answers using it. I've tried using
2008 Sep 10
2
arima and xreg
Dear R-help-archive.. I am trying to figure out how to make arima prediction when I have a process involving multivariate time series input, and one output time series (output is to be predicted) .. (thus strictly speaking its an ARMAX process). I know that the arima function of R was not designed to handle multivariate analysis (there is dse but it doesnt handle arma multivariate analysis, only
2009 Nov 02
1
AR Simulation with non-normal innovations - Correct
Dear Users, I would like to simulate an AR(1) (y_t=ct1+y_t-1+e_t) model in R where the innovations are supposed to follow a t-GARCH(1,1) proccess. By t-GARCH I want to mean that: e_t=n_t*sqrt(h_t) and h_t=ct2+a*(e_t)^2+b*h_t-1. where n_t is a random variable with t-Student distribution. If someone could give some guidelines, I can going developing the model. I did it in matlab, but the loops
2011 Apr 07
1
comparing ARIMA model to data
hi, i am trying to teach myself about ARIMA models. i have followed examples from a number of sources and have more or less got the hang of how it works. i would like to compare the output from the fitted model to the original data. is this possible? or even a meaningful thing to do? to be clear, for example, having generated a fit to some data using > fit <- arima(LakeHuron, order = c(1,
2011 Jan 30
2
ggplot2 -- scale_colour_manual()
According to Hadley's ggplot book (p. 109), both the graphs below should have a legend, and yet none appears in my hands. Any suggestions? I can't see a typo. Is there a bug? library(ggplot2) data(LakeHuron) huron = data.frame(year=1875:1972,level=LakeHuron) p = ggplot(huron, aes(year)) + geom_line(aes(y= level - 5), colour = 'blue') + geom_line(aes(y= level + 5), colour
2010 Aug 23
1
Fitting a regression model with with ARMA error
Hi, I want to fit a regression model with one independent variable. The error part should be fitted an ARMA process. For example, y_t = a + b*x_t + e_t where e_t is modelled as an ARMA process. Please let me know how do I do this in R. What code should I use? TIA Aditya [[alternative HTML version deleted]]
2010 Mar 11
1
VAR with contemporaneous effects
Hi, I would like to estimate a VAR of the form: Ay_t = By_t-1 + Cy_t-2 + ... + Dx_t + e_t Where A is a non-diagonal matrix of coefficients, B and C are matricies of coefficients and D is a matrix of coefficients for the exogenous variables. I don't think the package {vars} can do this because I want to include contemporaneous cross-variable impacts. So I want y1_t to affect y2_t and I
2011 Aug 25
1
Autocorrelation using acf
Dear R list As suggested by Prof Brian Ripley, I have tried to read acf literature. The main problem is I am not the statistician and hence have some problem in understanding the concepts immediately. I came across one literature (http://www.stat.nus.edu.sg/~staxyc/REG32.pdf) on auto-correlation giving the methodology. As per that literature, the auto-correlation is arrived at as per following.
2002 Apr 09
2
Restricted Least Squares
Hi, I need help regarding estimating a linear model where restrictions are imposed on the coefficients. An example is as follows: Y_{t+2}=a1Y_{t+1} + a2 Y_t + b x_t + e_t restriction a1+ a2 =1 Is there a function or a package that can estimate the coefficient of a model like this? I want to estimate the coefficients rather than test them. Thank you for your help Ahmad Abu Hammour --------------
2010 Dec 26
0
GLS with corAR(1) correlation structure residual/standard error calculation
I am using the gls function to fit a two-stage least squares model with first order autoregressive error terms. Since there is no automated adjustment for the use of two-stage least squares in this package, I am trying to manually replicate standard errors of the coefficient estimates in order to adjust for a first stage OLS estimate of endogenous variables. However, thus far I have been unable to
2006 May 19
0
how to estimate adding-regression GARCH Model
---------- Forwarded message ---------- From: ma yuchao <ma.yuchao@gmail.com> Date: 2006-5-20 ÉÏÎç4:01 Subject: hello, everyone To: R-help@stat.math.ethz.ch Hello, R people: I have a question in using fSeries package--the funciton garchFit and garchOxFit if adding a regression to the mean formula, how to estimate the model in R? using garchFit or garchOxFit? For example,
2009 Dec 01
1
ggplot legend for multiple time series
Hello All, I am trying to create a legend for a black-white graph. The package I use is ggplot2. It can add colors to the legend key but not line types. Can you please help? # example from Wickman (2009, ggplot2 - elegant graphics for data analysis, page 109) library(ggplot2) huron <- data.frame(year=1875:1972, level=LakeHuron) ggplot(huron, aes(year)) +
2009 Apr 23
0
How to construct confidence bands from a gls fit?
Dear R-list, I would like to show the implications of estimating a linear trend to time series, which contain significant serial correlation. I want to demonstrate this, comparing lm() and an gls() fits, using the LakeHuron data set, available in R. Now in my particular case I would like to draw confidence bands on the plot and show that there are differences. Unfortunately, I do not know how to
2003 Apr 21
2
Anyone Familiar with Using arima function with exogenous variables?
I've posted this before but have not been able to locate what I'm doing wrong. I cannot determine how the forecast is made using the estimated coefficients from a simple AR(2) model when there is an exogenous variable. Does anyone know what the problem is? The help file for arima doesn't show the model with any exogenous variables. I haven't been able to locate any documents
2007 Nov 18
0
question regarding time series packages
Good afternoon! I'm trying to learn time series but i have a bit of of a problem using R packages for this. 1. > LakeHuron > sample(500:600, 98) > sample(500:600, 98)->t > fit<-arima(LakeHuron, order=c(2,1,1), xreg=t) > fit > predict(fit, n.ahead=1, newxreg=t) Now, my problem is this: is it ok to use the same t in predict function or should my newxreg contain 99
2007 May 08
2
statistics/correlation question NOT R question
This is not an R question but if anyone can help me, it's much appreciated. Suppose I have a series ( stationary ) y_t and a series x_t ( stationary )and x_t has variance sigma^2_x and epsilon is normal (0, sigma^2_epsilon ) and the two series have the relation y_t = Beta*x_t + epsilon My question is if there are particular values that sigma^2_x and sigma^2_epsilon have to take in
2013 Feb 17
0
forecast ARMA(1,1)/GARCH(1,1) using fGarch library
Hi, i am working in the forecast of the daily price crude . The last prices of this data are the following: 100.60 101.47 100.20 100.06 98.68 101.28 101.05 102.13 101.70 98.27 101.00 100.50 100.03 102.23 102.68 103.32 102.67 102.23 102.14 101.25 101.11 99.90 98.53 96.76 96.12 96.54 96.30 95.92 95.92 93.45 93.71 96.42 93.99 93.76 95.24 95.63 95.95 95.83 95.65
2008 Sep 10
0
FW: RE: arima and xreg
hi: you should probably send below to R-Sig-Finance because there are some econometrics people over there who could also possibly give you a good answer and may not see this email ? Also, there's package called mar ( I think that's the name ) that may do what you want ? Finally, I don't know how to do it but I think there are ways of converting a multivariate arima into the