Displaying 20 results from an estimated 300 matches similar to: "Plotting K-means clustering results on an MDS"
2003 Jun 05
1
kmeans (again)
Regarding a previous question concerning the kmeans function I've tried the
same example and I also get a strange result (at least according to what is
said in the help of the function kmeans). Apparently, the function is
disregarding the initial cluster centers one gives it. According to the help
of the function:
centers: Either the number of clusters or a set of initial cluster
2012 Jun 27
1
Error: figure margins too large
Hello,
I am running cluster analysis, and am attempting to create a graph of my clusters. I keep on getting an error that says that my figure margins are too large.
d <- file.choose()
d <- read.csv(d,header=TRUE)
mydataS <- scale(d, center = TRUE, scale=TRUE)
#Converts mydataS from a matrix to a data frame
mydataS2 <- as.data.frame(mydataS)
#removes "coden"
2003 Feb 13
1
k- means cluster analysis
Hi all,
I am trying to run the k-means cluster analysis using the function kmeans
in the package cluster.
The data are:
x = c(-0.26, -0.23, -0.05, -0.20, 0.30, -0.84, -0.10, -0.12, 0.10, -0.31,
-0.19, 0.18, -0.26,
-0.23, -0.37, -0.23)
I've got two different solutions when I ran this function over a few times:
kmeans(x, centers=2)
The first solution gives the following:
$cluster
[1]
2013 Jan 24
1
Help regarding kmeans output. need to save the clusters into different directories/folders.
Hi Team,
I am trying to run kmeans in R, and I need to save the different clusters
into different folders. How can I achieve this?
# this is how my data looks.
$ *cat 1.tsv | head*
userid bookid rating bookTotalRatings bookAvgRating
userTotalRatings userAvgRating
1 100 0 24 2.7916666666666665 291 2.6735395189003435
2 200 7 24 2.9583333333333335 6 7.0
2003 Apr 14
2
kmeans clustering
Hi,
I am using kmeans to cluster a dataset.
I test this example:
> data<-matrix(scan("data100.txt"),100,37,byrow=T)
(my dataset is 100 rows and 37 columns--clustering rows)
> c1<-kmeans(data,3,20)
> c1
$cluster
[1] 1 1 1 1 1 1 1 3 3 3 1 3 1 3 3 1 1 1 1 3 1 3 3 1 1 1 3 3 1 1 3 1 1 1 1 3
3
[38] 3 1 1 1 3 1 1 1 1 3 3 3 1 1 1 1 1 1 3 1 3 1 1 3 1 1 1 1 3 1 1 1 1 1 1 3
2001 Mar 13
1
kmeans cluster stability
I'm doing kmeans partitioning on a small (n=26) dataset that has 5
variables. I noticed that if I repeatedly run the same command, the
cluster centers change and the cluster membership changes.
Using RW1022 under Windows NT & Windows 2000
>kmeans(pottery[,1:5], 4, 20)
[...snip]
$size
[1] 7 3 9 7
[...snip]
$size
[1] 7 10 4 5
[...snip]
$size
[1] 6 10 5 5
yields a different
2004 Jan 22
1
Re: matrix exponential: M0
H i, all!
First of all, I'd like to apologize for my poor English. It's for years
I don't use it.
This is a R-version of a function I wrote a long ago for my HP48 calculator.
It works with the binary expression of the power and just need to
duplicate the mem used by X.
Hope this helps.
mtx.exp<-function(X,n)
#Function to calculate the n-th power of a matrix X;
{
phi <-
2013 Jun 24
1
K-means results understanding!!!
Dear members.
I am having problems to understand the kmeans- results in R. I am applying
kmeans-algorithms to my big data file, and it is producing the results of
the clusters.
Q1) Does anybody knows how to find out in which cluster (I have fixed
numberofclusters = 5 ) which data have been used?
COMMAND
(kmeans.results <- kmeans(mydata,centers =5, iter.max= 1000, nstart =10000))
Q2) When I
2003 Jun 06
1
Kmeans again
Dear helpers
I'm sorry to insist but I still think there is something wrong with the function kmeans. For instance, let's try the same small example:
> dados<-matrix(c(-1,0,2,2.5,7,9,0,3,0,6,1,4),6,2)
I will choose observations 3 and 4 for initial centers and just one iteration. The results are
> A<-kmeans(dados,dados[c(3,4),],1)
> A
$cluster
[1] 1 1 1 1 2 2
$centers
2007 Dec 05
1
Information criteria for kmeans
Hello,
how is, for example, the Schwarz criterion is defined for kmeans? It should
be something like:
k <- 2
vars <- 4
nobs <- 100
dat <- rbind(matrix(rnorm(nobs, sd = 0.3), ncol = vars),
matrix(rnorm(nobs, mean = 1, sd = 0.3), ncol = vars))
colnames(dat) <- paste("var",1:4)
(cl <- kmeans(dat, k))
schwarz <- sum(cl$withinss)+ vars*k*log(nobs)
Thanks
2008 Aug 10
1
R function, sink() and empty file
Dear all,
I wrote a simple script in order to put together some functions and method
to be executed on various files
I am trying to have to possibility to call the script changing few
parameters in order to use the different files.
I succeeded partly using the function method.
However in my script I call the sink() function in order to output the
results to a .txt file. When using the function the
2017 Oct 23
2
master/master replications v. 2.2.32
Hi, in the past I set up a master/master replication through TCP using
dovecot 2.2.10 on both servers and everything is running fine, I filter the
users to replicate using the iterate_query on file dovecot-sql.con.ext; now
I want to set up a new replication between two new servers running dovecot
2.2.32 but the replicator service tries to replicate every user on my
database even when the
2017 Oct 24
0
Fwd: master/master replications v. 2.2.32
doveconf -n
# 2.2.32 (dfbe293d4): /etc/dovecot/dovecot.conf
# OS: Linux 2.6.32-696.1.1.el6.x86_64 x86_64 CentOS release 6.9 (Final) ext3
auth_socket_path = /var/run/dovecot/auth-userdb
doveadm_password = # hidden, use -P to show it
doveadm_port = 61800
first_valid_uid = 150
last_valid_uid = 150
mail_location = maildir:/var/vmail/%d/%n
mail_plugins = notify replication
mail_privileged_group =
2005 Aug 17
2
power of a matrix
Dear all,
I have a population with three age-classes, at time t=0 the population
is:
n.zero <- c(1,0,0)
I have a transition matrix A which denotes "fertility" and "survival":
A <- matrix(c(0,1,5, 0.3,0,0, 0,0.5,0), ncol=3, byrow=TRUE)
To obtain the population at t=1, I calculate:
A %*% n.zero
To obtain the population t=2, I calculate:
A %*% (A %*% n.zero)
... and so
2012 Jan 14
1
Error: unexpected '<' in "<" when modifying existing functions
Hi.
I am trying to modify kmeans function.
It seems that is failing something obvious with the workspace.
I am a newbie and here is my code:
myk = function (x, centers, iter.max = 10, nstart = 1, algorithm =
c("Hartigan-Wong",
+ "Lloyd", "Forgy", "MacQueen"))
+ {
+ do_one <- function(nmeth) {
+ Z <- switch(nmeth, {
+ Z
2015 Apr 29
2
cantidad de datos
Buen aporte?excelente!!
Atte.
Ricardo Alva Valiente
De: Jose Luis Cañadas Reche [mailto:canadasreche en gmail.com]
Enviado el: miércoles, 29 de abril de 2015 12:51 PM
Para: Alva Valiente, Ricardo (RIAV); 'javier.ruben.marcuzzi en gmail.com'; R-help-es en r-project.org
Asunto: Re: [R-es] cantidad de datos
Podrías hacer varios kmedias con diferente número de clusters y comprobar como
2015 Apr 29
2
cantidad de datos
El inconveniente con un K-medias, es que se tiene que se tiene que pre definir el número de segmentos, pero eso es algo con lo q no cuento. La solución de Javier me parece q sería la única opción.
Atte.
Ricardo Alva Valiente
-----Mensaje original-----
De: R-help-es [mailto:r-help-es-bounces en r-project.org] En nombre de javier.ruben.marcuzzi en gmail.com
Enviado el: miércoles, 29 de abril de
2013 Jul 26
1
variación en los resultados de k medias (Alfredo Alvarez)
Buen día, no sé si estoy utilizando bien la lista, es la primera vez. Si lo
hago mal me corrigen por favor.
Sobre tu comentario Pedro, muchas gracias. Lo qeu entiendo con tu
sugerencia de set.seed es qeu de esa forma fijas los resultados, pero no
estoy seguro si otra agrupación funcione mejor. Es decir me interesa un
método de agrupación que genere la "mejor" agrupación y como los
2015 Jan 12
2
Zone file not written to slave DNS server
I have mostly succeeded in getting master and slave DNS servers operational. Mostly, because the zone file is not written when a zone is updated on the master server when the notify and transfer process happens.
The slave DNS server gets the changes to the modified zone, but the slave zone file remains as before. I've found a few tutorials and lots of discussions, many of which talk about
2004 Jan 23
0
Re: matrix __power__ (was "exponential")
Sorry I didn't answer before.
Martin, thanks very much for your notes and for tidying the function
up!
About matPower, I didn't realise that where it says "pot <- pot %*% p ot", consumption of memory was higer than it was on the original
algorithm,
And about the other function in this thread, matExp, I can remember I
us look to m
>Message: 27