similar to: Changing model parameters in the mi package

Displaying 20 results from an estimated 8000 matches similar to: "Changing model parameters in the mi package"

2013 Jan 14
0
Changing MaxNWts with the mi() function (error message)
Hello, I am trying to impute data with the mi() function (mi package) and keep receiving an error message. When imputing the variable, "sex," the mi() function accesses the mi.categorical() function, which then accesses the nnet() function. I then receive the following error message (preceded by my code below): > imputed.england=mi(england.pre.imputed, n.iter=6, add.noise=FALSE)
2013 Oct 29
3
Ayuda con Mice con polyreg
Saludo gente, antes que nada gracias por la ayuda que puedan aportarme, soy iniciante en R, estoy usando el paquete Mice para realizar imputaciones múltiples sobre variables en su mayoría categóricas. El problema está que cuando expresó este comando imp <- mice(dataset,method="polr",maxit=1) donde el dataset es un data.frame me tirá este error : iter imp variable 1 1 pial1a
2005 Feb 08
1
Toying with neural networks
Hello all, Ive been playing with nnet (package 'nnet') and Ive come across this problem. nnet doesnt seems to like to have more than 1000 weights. If I do: > data(iris) > names(iris)[5] <- "species" > net <- nnet(species ~ ., data=iris, size=124, maxit=10) # weights: 995 initial value 309.342009 iter 10 value 21.668435 final value 21.668435 stopped after 10
2011 Jan 07
1
Adjusting MaxNwts in MICE Package
Hi, I'm trying to impute a large data set using mice but I keep getting this: Error in nnet.default(X, Y, w, mask = mask, size = 0, skip = TRUE, softmax = TRUE, : too many (2944) weights nnet.default uses the argument MaxNWts to set a maximum number of weights. I've tried to change nnet.default to get around this, but mice is somehow still passing an argument that sets the maximum
2012 Jun 26
1
Error in mice
Hi all, I am imputing missingness of  90 columns  in a  data frame using mice. But "mice" gives back :  Error in nnet.default(X, Y, w, mask = mask, size = 0, skip = TRUE, softmax = TRUE,  :   too many (1100) weights Any idea to solve this error is welcome, Anera [[alternative HTML version deleted]]
2008 Feb 15
2
Softmax in nnet
Hi R help, I run my data in nnet with skip layer, factor response (with 0 & 1 values) and explicitly put softmax=T to compare the result of the default nnet with no softmax specification. I assume this should give me the same result. I got the result the default one, but not the softmax version and I got the error message that I did not quite understand. test6.nn.skipT.softm.Yfac <-
2013 Oct 29
0
Fwd: Ayuda con Mice con polyreg
Saludo gente, antes que nada gracias por la ayuda que puedan aportarme, soy iniciante en R, estoy usando el paquete Mice para realizar imputaciones múltiples sobre variables en su mayoría categóricas. El problema está que cuando expresó este comando imp <- mice(dataset,method="polr",maxit=1) donde el dataset es un data.frame me tirá este error : iter imp variable 1 1 pial1a
2013 Oct 30
2
disculpe las molestias ...ayuda con MICE
Saludo gente, antes que nada gracias por la ayuda que puedan aportarme, soy iniciante en R, estoy usando el paquete Mice para realizar imputaciones múltiples sobre variables en su mayoría categóricas. El problema está que cuando expresó este comando imp <- mice(dataset,method="polr",maxit=1) donde el dataset es un data.frame me tirá este error : iter imp variable 1 1 pial1a
2010 Jul 06
1
Error message using mi() in mi package
Hello! I get the following message when I run the mi() function from the mi package. Error while imputing variable: c3 , model: mi.polr Error in eval(expr, envir, enclos) : could not find function "c14ordered" Here's the situation: I am running R v. 2.9.2 on Mac OSX v. 10.5.8. I am trying to impute missing data in a data set that I've trimmed down to 302 variables.
2010 Jun 02
1
nnet: cannot coerce class c("terms", "formula") into a data.frame
Dearest all, Objective: I am now learning neural networks. I want to see how well can train an artificial neural network model to discriminate between the two files I am attaching with this message. http://r.789695.n4.nabble.com/file/n2240582/3dMaskDump.txt 3dMaskDump.txt http://r.789695.n4.nabble.com/file/n2240582/test_vowels.txt test_vowels.txt Question: when I am attempting to run
2013 Oct 30
1
disculpe las molestias ...ayuda con MICE
Muchas gracias, pero claro en una muestra de 50 datos se ejecuta, en la muestra original de 1000 registros me tira error :( 2013/10/30 daniel <daniel319@gmail.com> > Amalia, > > No obtengo tus resultados. Corrí tus formulas y datos y el resultado es > x <- structure(list(ï..psraid = c(202517L, 202518L, 202520L, 202523L, > + 202527L, 202537L, 202543L, 202544L, 202551L,
2005 Apr 11
4
R: function code
HI sorry to be a nuisance to all!!! how can i see the code of a particular function? e.g. nnet just as an example
2012 Aug 11
1
Imputing data below detection limit
Hello, I'm trying to impute data below detection limit (with multiple detection limits) so i need just a method or a code for imputation and then extract the complete dataset to do the analyses. Is there any package which could do that simply as i'm a beginner in R Thank you -- View this message in context:
2012 Dec 08
1
imputation in mice
Hello! If I understand this listserve correctly, I can email this address to get help when I am struggling with code. If this is inaccurate, please let me know, and I will unsubscribe. I have been struggling with the same error message for a while, and I can't seem to get past it. Here is the issue: I am using a data set that uses -1:-9 to indicate various kinds of missing data. I changed
2010 Jul 15
1
Error using the mi package
I'm trying to impute data using the mi package, but after running through almost the entire first round of imputations (which takes quite a while), it throws this error (I'll include the whole output prior to the error for context). Does anyone know what is causing it, or how I can fix it? More specifically, how can I tell what is throwing the error so I know what to fix? Is
2004 Mar 30
1
classification with nnet: handling unequal class sizes
I hope this question is adequate for this list I use the nnet code from V&R p. 348: The very nice and general function CVnn2() to choose the number of hidden units and the amount of weight decay by an inner cross-validation- with a slight modification to use it for classification (see below). My data has 2 classes with unequal size: 45 observations for classI and 116 obs. for classII With
2013 Oct 30
0
disculpe las molestias ...ayuda con MICE
Amalia, No obtengo tus resultados. Corrí tus formulas y datos y el resultado es x <- structure(list(ï..psraid = c(202517L, 202518L, 202520L, 202523L, + 202527L, 202537L, 202543L, 202544L, 202551L, 202566L, 202570L, + 202571L, 202606L, 202619L, 202624L, 202629L, 202631L, 202632L, + 202633L, 202648L, 202657L, 202663L, 202676L, 202683L, 202685L, + 202706L, 202708L, 202709L, 202710L, 202734L,
2011 Dec 02
2
Imputing data
So I have a very big matrix of about 900 by 400 and there are a couple of NA in the list. I have used the following functions to impute the missing data data(pc) pc.na<-pc pc.roughfix <- na.roughfix(pc.na) pc.narf <- randomForest(pc.na, na.action=na.roughfix) yet it does not replace the NA in the list. Presently I want to replace the NA with maybe the mean of the rows or columns or
2008 Mar 05
1
rrp.impute: for what sizes does it work?
Hi, I have a survey dataset of about 20000 observations where for 2 factor variables I have about 200 missing values each. I want to impute these using 10 possibly explanatory variables which are a mixture of integers and factors. Since I was quite intrigued by the concept of rrp I wanted to use it but it takes ages and terminates with an error. First time it stopped complaining about too little
2010 Oct 12
1
need help with nnet
HI, Dear R community, My data set has 2409 variables, the last one is response variable. I have used the nnet after feature selection and works. But this time, I am using nnet to fit a model without feature selection. I got the following error information: > dim(train) [1] 1827 2409 nnet.fit<-nnet(as.factor(out) ~ ., data=train, size=3, rang=0.3, decay=5e-4, maxit=500) # model